Основы генетики. История развития генетики История исследование генетики человека

Генетика

Набор аллелей для данного организма, называется его , а наблюдаемая характеристика или признак организма называют его . Когда говорят, что данный организм гетерозиготный по гену, часто одну аллель указывают как доминирующую (доминантную), поскольку ее качества преобладают в фенотипе организма, в то время как другие аллели называются рецессивными, поскольку их качества могут отсутствовать и не наблюдаться. Некоторые аллели не имеют полного доминирования, а взамен имеют неполное доминирование промежуточного фенотипа, или т.н. - обе черты являются доминантными одновременно, и обе черты присутствуют в фенотипе.

Когда пара организмов размножается половым путем, их потомки случайно наследуют один из двух аллелей от каждого из родителей. Наблюдение дискретного наследования и сегрегация аллелей в общем известны как , или закон сегрегации (закон единообразия гибридов первого поколения).

Взаимодействие нескольких генов

Человеческий рост представляет собой комплексный генетический признак. Результаты исследования, полученные Фрэнсисом Гальтон в 1889 году, показывают взаимосвязь между ростом потомков и средним ростом их родителей. Однако корреляция не является абсолютной и присутствуют значительные отклонения от генетической изменчивости в росте потомков, что свидетельствует о том, что окружающая среда является также важным фактором этого признака.

Организмы имеют тысячи генов, а во время полового размножения ассортимент этих генов в основном является независимым, то есть их наследования происходит случайным образом без связи между ними. Это означает, что наследование аллелей для желтого или зеленого цвета горошка не имеет отношения к наследованию аллелей для белого или фиолетового цвета цветов. Этот феномен, известный как , или "Закон независимого наследования" (закон расщепления признаков), означает, что аллели разных генов перемешиваются между родителями для формирования потомков с различными комбинациями. Некоторые гены не могут быть унаследованы отдельно, поскольку для них предназначена определенная генетическая связь, которая обсуждается в дальнейшем в статье.

Часто разные гены могут взаимодействовать таким образом, что они влияют на одну и ту же характерную черту. Например, в пупочнике весеннем (Omphalodes verna) существует ген из аллелей, определяющих цвет цветка: голубой или пурпурный. Однако другой ген контролирует или вообще имеет цветок цвет либо он белый. Когда растение имеет две копии белой аллели, его цветы являются белыми, независимо от того первый ген имел голубую или пурпурную аллель. Это взаимодействие между генами, называется - активность одного гена находится под влиянием вариаций других генов.

Многие признаки не являются дискретными чертами (например, фиолетовые или белые цветки), но зато есть непрерывными чертами (например, человеческий рост и цвет кожи). Этот комплекс признаков является следствием наличия многих генов. Влияние этих генов является связующим звеном различных степеней влияния окружающей среды на организмы. - это степень вклада генов организма к комплексу характерных черт. Измерение наследственности черт является относительным - в среде которая часто изменяется, она имеет большее влияние на общую смену характерных признаков. Например, в Соединенных Штатах рост человека является комплексной чертой с вероятностью наследования 89%. Однако, в Нигерии, где люди имеют существенную разницу в возможностях доступа к хорошему питания и здравоохранению, вероятность наследования такого признака как рост всего 62%.

Воспроизведение

Когда происходит деление клеток, их геном полностью копируется, и каждая дочерняя клетка наследует один полный набор генов. Этот процесс называется - простейшая форма воспроизведения и основа для вегетативного (бесполого) размножения. Вегетативное размножение может также происходить и в многоклеточных организмах, создавая потомков, которые наследуют геном от одного отца. Отпрысков, которые являются генетически идентичными с их родителями, называют клонами.

Эукариотные организмы часто используют половое размножение для получения потомства, имеющие смешанный генетический материал, унаследованный от двух разных отцов. Процесс полового размножения меняется (чередуется) в зависимости от типа, который содержит одну копию генома ( и двойную копию (). Гаплоидные клетки образуются в результате и сливаясь с другой гаплоидной клеткой генетический материал для создания диплоидной клетки с парными хромосомами (напр. слияние (гаплоидная клетка) и (гаплоидная клетка)) вызывает образование . Диплоидные клетки путем деления образуют гаплоидные клетки, без воспроизведения их ДНК, для создания дочерних клеток, которые случайно наследуют одну из каждой пары хромосом. Большинство животных и многие растения являются диплоидными организмами на протяжении большей части своей жизни, с гаплоидной формой, которая характерна только для одной клетки - .

Несмотря на то, что они не используют гаплоидный / диплоидный способ полового размножения бактерии имеют много способов получения новой генетической информации (то есть для изменчивости). Некоторые бактерии могут пройти , передавая небольшой круговой фрагмент ДНК другой бактерии. Бактерии могут также принимать чужеродные фрагменты ДНК из окружающей среды и интегрировать их в свой геном, этот феномен, известный как трансформация . Этот процесс называют также - передача фрагментов генетической информации между организмами, которые не связанны между собой.

Р.Ш. Шамшутдинов, 10 «б», школа № 10

Доклад на тему:

«Генетика»

Первые генетические представления формировались в связи с сельскохозяйственной и медицинской деятельностью людей. Исторические документы свидетельствуют, что уже 6 тысяч лет назад в животноводстве составлялись родословные, люди уже понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Наблюдения о наследовании повышенной кровоточивости у лиц мужского пола (гемофилия) отражены в религиозных документах, в частности, в Талмуде (4-5 века до н. э.). Передача по наследству из поколения в поколение определенных признаков составляет понятие одного из важнейших свойств живого – наследственность . Отбирая определенные организмы из при­родных популяций и скрещивая их между со­бой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами. Из этого следует, что человек замечал и различия, возникающие в поколениях живых организмов и отличающие потомство от родителей. То есть человек имперически (без полного понимания сути процесса) использовал другое основополагающее свойство живого – изменчивость .

Таким образом, наследственность – свойство живых организмов обеспечивать структурную и функциональную преемственность между поколениями, а изменчивость – изменения наследственных задатков, возникающие в поколениях.

Фундаментальные характеристики живого наследственность и изменчивость тесно связаны с размножением и индивидуальным развитием и служат необходимыми предпосылками процесса эволюции. Благодаря изменчивости существует разнообразие живых форм, а наследственность сохраняет эволюционный опыт биологического вида в поколениях.

Генетика – наука, изучающая закономерности наследственности и изменчивости, а также биологические механизмы, их обеспечивающие.

Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 г. опубликовал статью, заложившую основы совре­менной генетики. Мендель показал, что наследст­венные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособлен­ных) единиц. Эти единицы, представленные у особей парами (аллелями), остаются дискретными и передаются по­следующим поколениям в мужских и женских га­метах, каждая из которых содержит по одной едини­це из каждой пары. В 1909 г. датский ботаник Иогансен назвал эти единицы «генами», а в 1912 г. американский генетик Морган показал, что они находятся в хромосомах.

Официальной датой рождения генетики считают 1900 год, когда были опубликованы данные Г. де Фриза, К.Корренса и К.Чермака, фактически переоткрывших закономерности наследования признаков, установленные Г.Менделем. Первые десятилетия 20-го века оказались исключительно плодотворными в развитии основных положений и направлений генетики. Было сформулировано представление о мутациях, популяциях и чистых линиях организмов, хромосомная теория наследственности, открыт закон гомологических рядов, получены данные о возникновении наследственных изменений под действием рентгеновских лучей, была начата разработка основ генетики популяций организмов.

В1953 году в международном научном журнале была напечатана статья биологов Джеймса Уотсона и Френсиса Крика о строении дезоксирибонуклеиновой кислоты (ДНК) – одного из веществ, постоянно присутствующих в хромосомах. Структура ДНК оказалась совершенно необычной! Её молекулы имеют огромную по молекулярным масштабам длину и состоят из двух нитей, сплетённых между собой в двойную спираль. Каждую из нитей можно сравнить с длинной нитью бус. У белков «бусинами» являются аминокислоты 20 различных типов. У ДНК – всего 4 типа «бусин», и зовутся они нуклеотидами. «Бусины» двух нитей двойной спирали ДНК связаны между собой и строго друг другу соответствуют. Чтобы наглядно представить себе это, вообразим две рядом лежащие нитки бус. Напротив каждой красной бусины в одной цепи лежит, допустим, синяя бусина в другой. Напротив каждой зелёной – жёлтая. Точно также в ДНК напротив нуклеотида аденина находится тимин, напротив цитозина – гуанин. При таком построении двойной спирали каждая из цепей содержит сведения о строении другой. Зная строение одной цепи, всегда можно восстановить другую. Получается две двойные спирали – точные копии их предшественницы. Это свойство точно копировать себя с исходной матрицы имеет ключевое значение для жизни на Земле. Реакции матричного синтеза не известны в неживой природе. Без этих реакций живое утратило бы своё главное свойство – способность воспроизводить себя. В нитях ДНК четырёхбуквенной азбукой из «бусин»-нуклеотидов записано строение всех белков живых организмов. Вся информация, касающаяся строения одного белка, занимает в ДНК небольшой участок. Этот участок и является геном. Из четырёх букв «алфавита ДНК» можно составить 64 трёхбуквенных «слова» – триплета. Словаря из 64 слов-триплетов вполне хватает, чтобы записать названия 20 аминокислот, входящих в состав белков.

Решающее значение для развития генетики на настоящем этапе имеют открытие «вещества наследственности» – дезоксирибонуклеиновой кислоты, расшифровка генетического кода, описание механизма биосинтеза белка.

Исторически интерес медицины к генетике формировался первоначально в связи с наблюдениями за наследуемыми патологическими (болезненными) признаками. Во второй половине 19-го века английский биолог Ф.Гальтон выделил как самостоятельный предмет исследования «наследственность человека». Он же предложил ряд специальных методов генетического анализа: генеалогический, близнецовый, статистический. Изучение закономерностей наследования нормальных и патологических признаков и сейчас занимает ведущее место в генетике человека .

Обнаружение взаимосвязи между генами и белками (ферментами) привело к созданию биохимической и молекулярной генетики (молекулярной биолгии) . Иммуногенетика изучает генетические основы иммунных реакций организма человека. Выяснение первичного биохимического нарушения, приводящего к наследственному заболевания, облегчает поиск путей лечения таких болезней. Так, заболевание фенилкетонурия, обусловленное недостаточным синтезом определенного фермента, регулирующего обмен аминокислоты фенилалалина, поддается лечению, если из пищи исключить эту аминокислоту. Раньше же, дети, родившиеся с таким пороком, были обречены.

Изучение роли генетических факторов и факторов среды в развитии заболеваний с наследственным предрасположением составляет один из ведущих разделов медицинской генетики .

Популяционная генетика изучает распределение пар генов в группах живых организмов, закономерности и причины этого распределения.

Цитогенетика – раздел генетики, изучающий распределение генов в хромосомах эутокариотов, картирование генов в хромосомах.

Изменения в генетическом материале могут возникнуть под воздействие факторов окружающей среды. Так существует раздел генетики – радиационная генетика – предметом изучения которого является влияние на генотип излучающих физических факторов.

Существовали и существуют и спорные, неоднозначно воспринимаемые обществом, разделы генетики. Так, в последней четверти 19-го века Ф.Гальтон поставил вопрос о развитии особой науки – евгеники . Ее задачей должно было стать улучшение человеческого рода путем повышения в генотипе количества полезных генов и снижения доли вредных через систематическое избирательное размножение одаренных людей и ограничение репродукции асоциальных индивидуумов, например, преступников. Вскоре выяснилось, что, даже не принимая во внимание этические основы жизни человечества, это невозможно чисто практически. Современная генетика, молекулярная биология и медицина располагают средствами манипулирования с наследственным материалом, намного превосходящим по своим возможностям ограничение браков. Это искусственное осеменение и зачатие «в пробирке» с последующим перемещением зародыша в матку женщины, отбор зародышей на ранних стадиях развития, генетическая инженерия, пересадка ядра соматической клетки в цитоплазму яйцеклетки. Важно, однако, понимать, что биологические способы улучшения человеческого общества неприемлемы, какую бы конкретную форму они не принимали. Но, генетика и медицина ответственны за здоровье потомства. Не секрет, что в настоящее время в мире более 5 % детей рождаются с наследственными нарушениями, 10-20 % детской смертности обусловлено наследственной патологией, до трети больных детей находятся на лечении в больницах с наследственными болезнями. Генетика и медицина в борьбе за здоровье людей в каждом поколении учитывают, что существенное влияние на проявление положительных и отрицательных свойств, оказывает среда, в которой происходит развитие человека. Исходя из этого принципа в 1929 году Кольцов Н.К. выделил в практической генетике человека евфенику – науку о благоприятном проявлении наследственных признаков.

Генетика в настоящее время является одной из наук, определяющих развитие человечества. С генетикой связаны самые смелые прогнозы перспектив этого развития.

Р.Ш. Шамшутдинов

>Рефераты по биологии

Генетика

Генетика – одна из самых важных областей биологии. Это наука о закономерностях наследственности и изменчивости. Слово «генетика» имеет греческое происхождение и в переводе обозначает «происходящий от кого-то». Объектами исследования могут выступать растения, животные, люди, микроорганизмы. Генетика тесно связана с такими науками, как генная инженерия, медицина, микробиология и другими.

Изначально генетика рассматривалась как закономерность наследственности и изменчивости на основе внешних и внутренних признаков организма. На сегодняшний день известно, что гены существуют и представляют собой специально отмеченные участки ДНК или РНК, то есть молекулы, в которых запрограммирована вся генетическая информация.

Судя по археологическим доказательствам людям уже более 6000 лет известно, что некоторые физические признаки могут передаваться из поколения в поколение. Человек даже научился создавать улучшенные сорта растений и породы животных путем отбора определенных популяций и скрещивания их между собой. Однако важность генетики в полной мере стала известна лишь в XIX-XX веках с появлением современных микроскопов. Большой вклад в развитие генетики внес австрийский монах Грегор Мендель. В 1866 году он представил свою работу об основах современной генетики. Он доказал, что наследственные задатки не смешиваются, а передаются от поколения к поколению в виде обособленных единиц. В 1912 году американский генетик Томас Морган, доказал, что эти единицы находятся в хромосомах. С тех пор классическая генетика сделала научный шаг вперед и достигла больших успехов в объяснении наследственности не только на уровне организма, но и на уровне гена.

В 1940-1950-х годах началась эпоха молекулярной генетики. Появились доказательства ведущей роли ДНК в передаче наследственной информации. Открытием стала расшифровка структуры ДНК, триплетного кода и описание механизмов биосинтеза белка. Также, были обнаружены аминокислотная или нуклеотидная последовательность ДНК и РНК.

Первые опыты в России появились в XVIII веке и были связаны с гибридизацией растений. В XX веке появились важные работы в среде экспериментальной ботаники и зоологии, а также на опытных сельскохозяйственных станциях. К концу 1930-х годов в стране появилась сеть организованных научно-исследовательских институтов, опытных станций и вузовских кафедр генетики. В 1948 году генетика была объявлена лженаукой. Восстановление науки произошло после открытия и расшифровки структуры ДНК, примерно в 1960-е годы.­

Лысенко Анна

В реферате по биологии дано определение генетики, этапы развития этой науки, значение для жизни человека.

Скачать:

Предварительный просмотр:

Генетика представляет собой одну из основных, наиболее увлекательных и вместе с тем сложных дисциплин современного естествознания. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость.

В результате многочисленных – блестящих по своему замыслу и тончайших по исполнению – экспериментов в области молекулярной генетики современная биология обогатилась двумя фундаментальными открытиями, которые уже нашли широкое отражение в генетике человека, а частично и выполнены на клетках человека. Это показывает неразрывную связь успехов генетики человека с успехами современной биологии, которая все больше и больше становится связана с генетикой.

Первое – это возможность работать с изолированными генами. Она получена благодаря выделению гена в чистом виде и синтезу его. Значение этого открытия трудно переоценить. Важно подчеркнуть, что для синтеза гена применяют разные методы, т.е. уже имеется выбор, когда речь пойдет о таком сложном механизме как человек.

Второе достижение – это доказательство включения чужеродной информации в геном, а также функционирования его в клетках высших животных и человека. Материалы для этого открытия накапливались из разных экспериментальных подходов. Прежде всего, это многочисленные исследования в области вирусо-генетической теории возникновения злокачественных опухолей, включая обнаружение синтеза ДНК на РНК-матрице. Кроме того, стимулированные идеей генетической инженерии опыты с профаговой трансдукцией подтвердили возможность функционирования генов простых организмов в клетках млекопитающих, включая клетки человека.

Без преувеличения можно сказать, что, наряду с молекулярной генетикой, генетика человека относится к наиболее прогрессирующим разделам генетики в целом. Ее исследования простираются от биохимического до популяционного, с включением клеточного и организменного уровней.

Но рассмотрим отдельно историю развития генетики.

Основные этапы развития генетики.

Истоки генетики, как и всякой науки, следует искать в практике. Генетика возникла в связи с разведением домашних животных и возделыванием растений, а также с развитием медицины. С тех пор как человек стал применять скрещивание животных и растений, он столкнулся с тем фактом, что свойства и признаки потомства зависят от свойств избранных для скрещивания родительских особей. Отбирая и скрещивая лучших потомков, человек из поколения в поколение создавал родственные группы – линии, а затем породы и сорта с характерными для них наследственными свойствами.

Хотя эти наблюдения и сопоставления еще не могли стать базой для формирования науки, однако бурное развитие животноводства и племенного дела, а также растениеводства и семеноводства во второй половине XIX века породило повышенный интерес к анализу явления наследственности.

Развитию науки о наследственности и изменчивости особенно сильно способствовало учение Ч. Дарвина о происхождении видов, которое внесло в биологию исторический метод исследования эволюции организмов. Сам Дарвин приложил немало усилий для изучения наследственности и изменчивости. Он собрал огромное количество фактов, сделал на их основе целый ряд правильных выводов, однако ему не удалось установить закономерности наследственности. Его современники, так называемые гибридизаторы, скрещивавшие различные формы и искавшие степень сходства и различия между родителями и потомками, также не смогли установить общие закономерности наследования.

Еще одним условием, способствовавшим становлением генетики как науки, явились достижения в изучении строения и поведения соматических и половых клеток. Еще в 70-х годах прошлого столетия рядом исследователей-цитологов (Чистяковом в 1972 г., Страсбургером в 1875 г.) было открыто непрямое деление соматической клетки, названное кариокинезом (Шлейхером в 1878 г.) или митозом (Флеммингом в 1882 г.). Постоянные элементы ядра клетки в 1888 г. по предложению Вальдейра получили название «хромосомы». В те же годы Флемминг разбил весь цикл деления клетки на четыре главные фазы: профаза, метафаза, анафаза и телофаза.

Одновременно с изучением митоза соматической клетки шло исследование развития половых клеток и механизма оплодотворения у животных и растений. О. Гертвиг в 1876 г. впервые у иглокожих устанавливает слияние ядра сперматозоида с ядром яйцеклетки. Н.Н. Горожанкин в 1880 г. и Е. Страсбургер в 1884 г. устанавливает то же самое для растений: первый – для голосеменных, второй – для покрытосеменных.

В те же Ван-Бенеденом (1883 г.) и другими выясняется кардинальный факт, что в процессе развития половые клетки, в отличие от соматических, претерпивают редукцию числа хромосом ровно вдвое, а при оплодотворении – слиянии женского и мужского ядра – восстанавливается нормальное число хромосом, постоянное для каждого вида. Тем самым было показано, что для каждого вида характерно определенное число хромосом.

Итак, перечисленные условия способствовали возникновению генетики как отдельной биологической дисциплины – дисциплины с собственными предметом и методами исследования.

Официальным рождением генетики принято считать весну 1900 г., когда три ботаника, независимо друг от друга, в трех разных странах, на разных объектах, пришли к открытию некоторых важнейших закономерностей наследования признаков в потомстве гибридов. Г. де Фриз (Голландия) на основании работы с энотерой, маком, дурманом и другими растениями сообщил «о законе расщепления гибридов»; К. Корренс (Германия) установил закономерности расщепления на кукурузе и опубликовал статью «Закон Грегора Менделя о поведении потомства у расовых гибридов»; в том же году К. Чермак (Австрия) выступил в печати со статьей (Об искусственном скрещивании у Pisum Sativum).

Наука почти не знает неожиданных открытий. Самые блестящие открытия, создающие этапы в ее развитии, почти всегда имеют своих предшественников. Так случилось и с открытием законов наследственности. Оказалось, что три ботаника, открывших закономерность расщепления в потомстве внутривидовых гибридов, всего-навсего «переоткрыли» закономерности наследования, открытые еще в 1865 г. Грегором Менделем и изложенные им в статье «Опыты над растительными гибридами», опубликованной в «трудах» Общества естествоиспытателей в Брюнне (Чехословакия).

Г. Мендель на растениях гороха разрабатывал методы генетического анализа наследования отдельных признаков организма и установил два принципиально важных явления:

признаки определяются отдельными наследственными факторами, которые передаются через половые клетки;

отдельные признаки организмов при скрещивании не исчезают, а сохраняются в потомстве в том же виде, в каком они были у родительских организмов.

Для теории эволюции эти принципы имели кардинальное значение. Они раскрыли один из важнейших источников изменчивости, а именно механизм сохранения приспособленности признаков вида в ряду поколений. Если бы приспособительные признаки организмов, возникшие под контролем отбора, поглощались, исчезали при скрещивании, то прогресс вида был бы невозможен.

Все последующее развитие генетики было связано с изучением и расширением этих принципов и приложением их к теории эволюции и селекции.

Из установленных принципиальных положений Менделя логически вытекает целый ряд проблем, которые шаг за шагом получают свое разрешение по мере развития генетики. В 1901 г. де Фриз формулирует теорию мутаций, в которой утверждается, что наследственные свойства и признаки организмов изменяются скачкообразно – мутационно.

В 1903 г. датский физиолог растений В. Иоганнсен публикует работу «О наследовании в популяциях и чистых линиях», в которой экспериментально устанавливается, что относящиеся к одному сорту внешне сходные растения являются наследственно различными - они составляют популяцию. Популяция состоит из наследственно различных особей или родственных групп – линий. В этом же исследовании наиболее четко устанавливается, существование двух типов измен6чивости организмов: наследственной, определяемой генами, и ненаследственной, определяемой случайным сочетанием факторов, действующих на проявление признаков.

На следующем этапе развития генетики было доказано, что наследственные формы связаны с хромосомами. Первым фактом, раскрывающим роль хромосом в наследственности, было доказательство роли хромосом в определении пола у животных и открытие механизма расщепления по полу 1:1.

С 1911 г. Т. Морган с сотрудниками в Колумбийском университете США начинает публиковать серию работ, в которой формулирует хромосомную теорию наследственности. Экспериментально доказывая, что основными носителями генов являются хромосомы, и что гены располагаются в хромосомах линейно.

В 1922 г. Н.И. Вавилов формулирует закон гомологических рядов в наследственной изменчивости, согласно которому родственные по происхождению виды растений и животных имеют сходные ряды наследственной изменчивости. Применяя этот закон, Н.И. Вавилов установил центры происхождения культурных растений, в которых сосредоточено наибольшее разнообразие наследственных форм.

В 1925 г. у нас в стране Г.А. Надсон и Г.С. Филиппов на грибах, а в 1927 г. Г. Мёллер в США на плодовой мушке дрозофиле получили доказательство влияния рентгеновых лучей на возникновение наследственных изменений. При этом было показано, что скорость возникновения мутаций увеличивается более чем в 100 раз. Этими исследованиями была доказана изменчивость генов под влиянием факторов внешней среды. Доказательство влияния ионизирующих излучений на возникновение мутаций привело к созданию нового раздела генетики – радиационной генетики, значение которой еще более выросло с открытием атомной энергии.

В 1934 г. Т. Пайнтер на гигантских хромосомах слюнных желез двукрылых доказал, что прерывность морфологического строения хромосом, выражающаяся в виде различных дисков, соответствует расположению генов в хромосомах, установленному ранее чисто генетическими методами. Этим открытием было положено начало изучению структуры и функционирования гена в клетке.

В период с 40-х годов и по настоящие время сделан ряд открытия (в основном на микроорганизмах) совершенно новых генетических явлений, раскрывших возможности анализа структуры гена на молекулярном уровне. В последние годы с введением в генетику новых методов исследования, заимствованных из микробиологии мы подошли к разгадке того, каким образом гены контролируют последовательность расположения аминокислот в белковой молекуле.

Прежде всего, следует сказать о том, что теперь полностью доказано, что носители наследственности являются хромосомы, которые состоят из пучка молекул ДНК.

Были проведены довольно простые опыты: из убитых бактерий одного штамма, обладающего особым внешним признаком, выделили чистую ДНК и перенесли в живые бактерии другого штамма, после чего размножающиеся бактерии последнего приобрели признак первого штамма. Подобные многочисленные опыты показывают, что носителем наследственности является именно ДНК.

В 1953 г. Ф. Крик (Англия) и Дж. Уотстон (США) расшифровали строение молекулы ДНК. Они установили, что каждая молекула ДНК слагается из двух полидезоксирибонуклеиновых цепочек, спирально закрученных вокруг общей оси.

В настоящее время найдены подходы к решению вопроса об организации наследственного кода и экспериментальной его расшифровке. Генетика совместно с биохимией и биофизикой вплотную подошла к выяснению процесса синтеза белка в клетке и искусственному синтезу белковой молекулы. Этим начинается совершенно новый этап развития не только генетики, но и всей биологии в целом.

Развитие генетики до наших дней – это непрерывно расширяющийся фонт исследований функциональной, морфологической и биохимической дискретности хромосом. В этой области сделано уже много сделано уже очень много, и с каждым днем передний край науки приближается к цели – разгадки природы гена. К настоящему времени установлен целый ряд явлений, характеризующих природу гена. Во-первых, ген в хромосоме обладает свойством самовоспроизводится (авторепродукции); во-вторых, он способен мутационно изменяться; в-третьих, он связан с определенной химической структуры дезоксирибонуклеиновой кислоты – ДНК; в-четвертых, он контролирует синтез аминокислот и их последовательностей в белковой молекулы. В связи с последними исследованиями формируется новое представление о гене как функциональной системе, а действие гена на определение признаков рассматривается в целостной системе генов – генотипе.

Раскрывающиеся перспективы синтеза живого вещества привлекают огромное внимание генетиков, биохимиков, физиков и других специалистов.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Генетика-наука о наследственности и изменчивости организмов. Генетика- дисциплина, изучающая механизмы и закономерности наследственности и изменчивости организмов, методы управления этими процессами. Она призвана раскрыть законы воспроизведения живого по поколениям, появление у организмов новых свойств, законы индивидуального развития особи и материальной основы исторических преобразований организмов в процессе эволюции. Первые две задачи решают теория гена и теория мутаций. Выяснение сущности воспроизведения для конкретного разнообразия форм жизни требует изучения наследственности у представителей, находящихся на разных ступенях эволюционного развития. Объектами генетики являются вирусы, бактерии, грибы, растения, животные и человек. На фоне видовой и другой специфики в явлениях наследственности для всех живых существ обнаруживаются общие законы. Их существование показывает единство органического мира. История генетики начинается с 1900 года, когда независимо друг от друга Корренс, Герман и де Фриз открыли и сформулировали законы наследования признаков, когда была переиздана работа Г. Менделя УОпыты над растительными гибридамиФ. С того времени генетика в своем развитии прошла три хорошо очерченных этапа- эпоха Классической генетики (1900-1930), эпоха неоклассицизма (1930-1953) и эпоха синтетической генетики, которая началась в 1953 году. На первом этапе складывался язык генетики, разрабатывались методики исследования, были обоснованы фундаментальные положения, открыты основные законы. В эпоху неоклассицизма стало возможным вмешательство в механизм изменчивости, дальнейшее развитие получило изучение гена и хромосом, разрабатывается теория искусственного мутагенеза, что позволило генетике из теоритической дисциплины перейти к прикладной. Новый этап в развитии генетики стал возможным благодаря расшифровке структуры УзолотойФ молекулы ДНК в 1953 г. Дж. Уотсоном и Ф.Криком. Генетика переходит на молекулярный уровень исследований. Стало возможным расшифровать структуру гена, определить материальные основы и механизмы наследственности и изменчивости. Генетика научилась влиять на эти процессы, направлять их в нужное русло. Появились широкие возможности соединения теории и практики. ОСНОВНЫЕ МЕТОДЫ ГЕНЕТИКИ. Основным методом генетики на протяжении многих лет является гибридологический метод. Гибридизацией называется процесс скрещивания с целью получения гибридов. Гибрид это организм, полученный в результате скрещивания разнородных в генетическом отношении родительских форм. Гибридизация может быть внутривидовой, когда скрещиваются особи одного вида и отдаленной, если скрещиваются особи из различных видов или родов. При исследовании наследования признаков используются методы моногибридного, дигибридного, полигибридного скрещивания, которые были разработаны еще Г. Менделем в его опытах с сортами гороха. При моногибридном скрещивании наследование проводится по одной паре альтернативных признаков, при дигибридном скрещивании- по двум парам альтернативных признаков, при полигибридном скрещивании- по 3,4 и более парам альтернативных признаков. При изучении закономерностей наследования признаков и закономерностей изменчивости широко используется метод искусственного мутагенеза, когда с помощью мутагенов вызывают изменение в генотипе и изучают результаты этого процесса. Широкое распространение в генетике нашел метод искусственного получения полиплоидов, что имеет не только теоретическое, но и практическое значение. Полиплоиды обладают большой урожайностью и меньше поражаются вредителями и болезнями. Широко используется в генетике биометрические методы. Ведь наследуются и изменяются не только качественные, но и количественные. Биометрические методы позволили обосновать положение фенотипа и нормы реакции. С 1953 года особое значение для генетики приобрели биохимические методы исследования. Генетика вплотную занялась изучением материальных основ наследственности и изменчивости - генов. Объектом исследования генетики стали нуклеиновые кислоты, особенно ДНК. Изучение химической структуры гена позволило ответить на главные вопросы, которые ставила перед собой генетика. Как происходит наследование признаков? В результате чего возникают изменения признаков?Законы наследования, установленные Г. Менделем. Доминантные и рецессивные признаки, гомозигота и гетерозигота, фенотип и генотип, аллельные признаки. Гешскому ботанику - любителю Иоганну Грегору Менделю принадлежит открытие количественных закономерностей, сопровождающих формирование гибридов. В работах Г. Менделя (1856-1863) были раскрыты основы законов наследования признаков. В качестве объекта исследования Менделем был выбран горох посевной. На период исследований для этого строго самоопыляющегося растения было известно достаточное количество сортов с четко различными исследуемыми признаками. Выдающимся достижением Г. Менделя явилась разработка методов исследования гибридов. Им было введено понятие моногибридного, дигибридного, полигибридного скрещивания. Мендель впервые осознал, что только начав с самого простого случая - наблюдения за поведением в потомстве одной пары альтернативных признаков- и постепенно усложняя задачу. Можно разобраться в закономерностях наследования признаков. Планирование этапов исследования, математическая обработка полученных данных, позволили Менделю получить результаты, которые легли в основу фундаментальных исследований в области изучения наследственности. Мендель начал с опытов по по моногибридному скрещиванию сортов гороха. Исследование касалось наследованию только одной пары альтернативных признаков (красный венчик-АА*белый венчик-аа). На основании полученных данных Мендель ввел понятие доминантного и рецессивного признака. Доминантным признаком он назвал признак, который переходит в гибридные растения совершенно неизменным или почти неизменным, а рецессивным тот, который становится при гибридизации скрытым. Затем Мендель впервые сумел дать количественную оценку частотам появления рецессивных форм среди общего числа потомков для случаев моно-,ди-,тригибридного и более сложных скрещиваний. В результате исследований Г.Менделем были получены обоснования следующих обобщений фундаментальной важности: 1. При моногибридном скрещивании наблюдается явление доминирования. 2. В результате последующих скрещиваний гибридов происходит расщепление признаков в соотношении 3:1. 3. Особи содержат либо только доминантные, либо только рецессивные, либо смешанные задатки. Зигота, содержащая смешанные задатки получила название гетерозиготы, а организм, развившейся из гетерозиготы - гетерозиготным. Зигота, содержащая одинаковые(доминантные или рецессивные) задатки называется гомозиготой, а организм, развившейся из гомозиготы-гомозиготным. Мендель вплотную подошел к проблемам соотношения между наследственными задатками и определяемыми ими признаками организма. Внешний вид организма зависти от сочетания наследственных задатков. Этот вывод был им рассмотрен в работе УОпыты над растительными гибридамиФ. Мендель впервые четко сформулировал понятие дискретного наследственного задатка, независящего в своем проявлении от других задатков. Каждая гамета несет по одному задатку. Сумма наследственных задатков организма стала по предложению Иогансена в 1909 году называться генотипом, а внешний вид организма, определяемый генотипом, стал называться фенотипом. Сам наследственный задаток Иогансен позднее назвал геном. Во время оплодотворения гаметы сливаются, формируя зиготу, при этом в зависимости от сорта гамет, зигота получит те или иные наследственные задатки. За счет перекомбинации задатков при скрещиваниях образуются зиготы, несущие новое сочетание задатков, чем и обуславливаются различия между индивидуалами. Это легло в основу фундаментального закона Менделя- закона частоты гамет. Сущность закона заключается в следующем положении- гамет чисты, то есть они содержат по одному наследственному задатку от каждой пары. Пара задатков, сходящихся в гамете была названа аллелем, а сами задатки аллельными. Позднее появился термин аллельные гены, определяющий пару аллельных задатков. Работы Г. Менделя не получили в свое время никого признания и оставались неизвестными вплоть до вторичного переоткрытия законов наследственности К. Корренсом, К.Гермаком и Г. Де Фризом в 1900 году. В том же году Корренсом были сформулированны три закона наследования признаков, которые позднее были названы законами Менделя в честь выдающегося ученого, заложившего основы генетики.Моногибридное скрещивание. Единообразие гибридов первого поколения. Закон расщепления признаков.Цитологические основы единообразия гибридов первого поколения и расщепления признаков во втором поколении. Моногибридное скрещивание-это метод исследования, при котором изучается исследование одной пары альтернативных признаков. Для опытов по моногибридному скрещиванию Мендель выбрал 22 сорта гороха, которые имели четкие альтернативные различия по семи признакам: семене круглые или угловатые, семядоли желтые или зеленые, кожура семян серая или белая, семена гладкие или морщинистые, желтые или зеленые, цветки пазушные или верхушечные, растения высокие или карликовые. В течении ряда лет Мендель путем самоопыления отбирал материал для скрещивания, где родители были представлены чистыми линиями, то есть находились в гомозиготном состоянии. Скрещивание показало, что гибриды проявляют только один признак.

Что еще почитать