Первый закон кирхгофа кратко. Закон кирхгофа простыми словами. В качестве примера можно рассмотреть такую схему

Ранее были рассмотрены законы Ома для участка цепи и замкнутой цепи с одним источников э.д.с.

Сложная электрическая цепь, содержащая несколько источников э.д.с. и замкнутых контуров, не может быть рассчитана только с использованием законов Ома. Рассчитать и проанализировать сложную цепь можно с помощью двух законов Кирхгофа (сам Кирхгоф и некоторые современные специалисты называют эти законы «правилами», поскольку они являются следствием закона сохранения энергии применительно к электрическим цепям).

Для понимания формулировок и использования этих законов необходимо напомнить основные термины, относящиеся к электрическим цепям.

Электрическая цепь – это совокупность элементов, создающих пути для протекания электрических токов . Основными элементами электрической цепи являютсяисточники электроэнергии , преобразующие механическую, химическую и другие виды энергии в электрическую, иприемники , преобразующие электрическую энергию в другие виды: тепловую (резисторы), механическую (электродвигатели), химическую (зарядка аккумуляторов) и др. Кроме источников и приемников, элементами электрической цепи являются соединительные провода, электроизмерительные приборы, коммутирующие (переключающие) устройства, аппаратура защиты, автоматики и др.

Электрический узел – это часть электрической цепи, в которой сходится не менее трех ветвей (токов).

Ветвь участок цепи между двумя узлами, на всем протяжении которого ток один и тот же.

Контур замкнутая часть схемы, которая представляет собой неразветвленную цепь, если отключить все не входящие в нее ветви.

Первый закон Кирхгофа

На рисунке 5 показан электрический узел, в котором сходятся n= 5 ветвей с токами, часть из которых направлены к узлу, а часть – от него.

Первый закон Кирхгофа в первой редакции читается следующим образом:алгебраическая сумма токов в узле равна нулю , то есть

Вуравнении (8) токи, направленные к узлу, подставляют обычно со знаком «+», а от узла – со знаком «» (можно и наоборот).

Применительно к узлу, показанному на рисунке 5, равенство (8) записывается в свернутом виде:

или в развернутом:

Если перенести в последнем равенстве отрицательные токи в правую часть, то получим:

.

Из равенства (9) вытекает вторая редакция первого закона Кирхгофа :

Сумма токов, входящих в узел, равна сумме токов, выходящих из узла .

Справедливость первого закона Кирхгофа можно подтвердить рассуждением «от противного». Если предположить, что в узел в каждый момент времени притекает больше зарядов, чем вытекает (или наоборот), то электрические потенциалы узлов все время будут изменяться, а, следовательно, будет изменяться и распределение токов в элементах схемы, что практически не наблюдается и противоречит здравому смыслу.

Второй закон Кирхгофа

На рисунке 6 показана часть сложной электрической цепи в виде замкнутого контура, состоящего из m= 5 ветвей и содержащегоn= 3 источников э.д.с.

Второй закон Кирхгофа читается следующим образом:в замкнутом электрическом контуре алгебраическая сумма напряжений равна нулю (первая редакция) .

В этой формулировке следует различать напряжение как падение напряжения , создаваемое током I k k-той ветви в сопротивлении R k этой ветви, и напряжение источника ЭДС , которое равно величине этой ЭДС, но направлено (как разность электрических потенциалов внутри источника) от положительного зажима к отрицательному, то есть встречно с направлением ЭДС.

В показанном на рисунке 6 контуре токи ветвей создают падения напряжения I k R k , которые при заданном направлении обхода берутся со знаком «+», если направление токаI k совпадает с направлением обхода, и со знаком «», если направление тока встречно с направлением обхода. Что касается напряжений (разностей потенциалов) на зажимах источников ЭДС Е k , то необходимо учитывать, что потенциал на положительном зажиме источника выше, чем на входном, а величина этихнапряжений (а непадений напряжений !) равна по абсолютному значению соответствующей э.д.с. Е k . С учетом этогонапряжение источника берется со знаком «», если направление э.д.с. совпадает с направлением обхода, и со знаком «+», если направление обхода направлено встречно с направлением э.д.с.

Применительно к контуру (рис. 6), согласно приведенной выше формулировке второго закона Кирхгофа, можно записать:

Перенесем напряжения источников э.д.с. в правую часть равенства (10):

В правой части равенства (10а) оказалась алгебраическая сумма э.д.с., а не напряжений источников . В результате получается вторая редакция второго закона Кирхгофа: в замкнутом контуре алгебраическая сумма э.д.с. равна алгебраической сумме падений напряжения в ветвях, образующих этот замкнутый контур, то есть :

Применительно к контуру (рс. 6) равенство (11) примет вид

В такой формулировке, где напряжения источников заменены на э.д.с. источников, при обходе контура э.д.с. берется со знаком «+», если она совпадает с направлением обхода, и со знаком «-», если она действует встречно (как это следует из равенства (10а)).

Вторая формулировка закона Кирхгофа (10а) и (11) получила наибольшее применение на практике по сравнению с первой (10).

Два закона Кирхгофа вместе с законом Ома составляют тройку законов, с помощью которых можно определить параметры электрической цепи любой сложности. Законы Кирхгофа мы будем проверять на примерах простейших электрических схем, собрать которые не составит никакого труда. Для этого понадобится несколько , пара источников питания, в качестве которых подойдут гальванические элементы (батарейки) и мультиметр.

Первый закон Кирхгофа говорит, что сумма в любом узле электрической цепи равна нулю. Существует и другая, аналогичная по смыслу формулировка: сумма значений токов, входящих в узел, равна сумме значений токов, выходящих из узла.

Давайте разберем сказанное более подробно. Узлом называют место соединения трех и более проводников.

Ток, который втекает в узел, обозначается стрелкой, направленной в сторону узла, а выходящий из узла ток – стрелкой, направленной в сторону от узла.

Согласно первому закону Кирхгофа

Условно присвоили знак «+» всем входящим токам, а «-» ‑ все выходящим. Хотя это не принципиально.

1 закон Кирхгофа согласуется с законом сохранения энергии, поскольку электрические заряды не могут накапливаться в узлах, поэтому, поступающие к узлу заряды покидают его.

Убедиться в справедливости 1-го закона Кирхгофа нам поможет простая схема, состоящая из источника питания, напряжением 3 В (две последовательно соединенные батарейки по 1,5 В), три резистора разного номинала: 1 кОм, 2 кОм, 3,2 кОм (можно применять резисторы любых других номиналов). Токи будем измерять мультиметром в местах, обозначенных амперметром.

Если сложить показания трех амперметров с учетом знаков, то, согласно первому закону Кирхгофа, мы должны получить ноль:

I 1 — I 2 — I 3 = 0.

Или показания первого амперметра А1 будет равняться сумме показаний второго А2 и третьего А3 амперметров.

Второй закон Кирхгофа воспринимается начинающими радиолюбителями гораздо сложнее, нежели первый. Однако сейчас вы убедитесь, что он достаточно прост и понятен, если объяснять его нормальными словами, а не заумными терминами.

Упрощенно 2 закон Кирхгофа говорит: сумма ЭДС в замкнутом контуре равна сумме падений напряжений

ΣE = ΣIR

Самый простой случай данного закона разберем на примере батарейки 1,5 В и одного резистора.

Поскольку резистор всего один и одна батарейка, то ЭДС батарейки 1,5 В будет равна падению напряжения на резисторе.

Если мы возьмем два резистора одинакового номинала и подключим к батарейке, то 1,5 В распределятся поровну на резисторах, то есть по 0,75 В.

Если возьмем три резистора снова одинакового номинала, например по 1 кОм, то падение напряжения на них будет по 0,5 В.

Формулой это будет записано следующим образом:

Рассмотрим условно более сложный пример. Добавим в последнюю схему еще один источник питания E2, напряжением 4,5 В.

Обратите внимание, что оба источника соединены последовательно и согласно, то есть плюс одной батарейки соединяется с минусом другой батарейки или наоборот. При таком способе соединения гальванических элементов их электродвижущие силы складываются: E1 + E2 = 1,5 + 4,5 = 6 В, а падение напряжения на каждом сопротивлении составляет по 2 В. Формулой это описывается так:

На практике очень часто встречаются сложные (разветвленные) электрические цепи, для расчета которых удобно использовать правила Кирхгофа (рис. 4.22).

Рис. 4.22. Г. Кирхгоф (1824–1887) - немецкий физик

Первое правило Кирхгофа является следствием закона сохранения заряда и того естественного требования, чтобы при стационарных процессах ни в одной точке проводника не накапливались и не уменьшались заряды. Это правило относится к узлам , то есть к таким точкам в разветвленной цепи, в которой сходится не менее трех проводников.

Первое правило Кирхгофа гласит:

Алгебраическая сумма токов, сходящихся в узле, равна нулю, то есть количество зарядов, приходящих в данную точку цепи в единицу времени, равно количеству зарядов, уходящих из данной точки за то же время

При этом токи, подходящие к узлу и отходящие от него, имеют противоположные знаки (рис. 4.23).

Рис. 4.23. Сумма токов, сходящихся в узле равна нулю

Второе правило Кирхгофа является обобщением закона Ома и относится к любому замкнутому контуру разветвленной цепи.

Второе правило Кирхгофа гласит:

В любом замкнутом контуре цепи алгебраическая сумма произведений токов на сопротивления соответствующих участков контура равна алгебраической сумме ЭДС в контуре (рис. 4.24)

Рис. 4.24. Пример разветвленной электрической цепи.
Цепь содержит один независимый узел (a или d) и два независимых контура (например, abcd и adef)

Правила Кирхгофа позволяют определить силу и направление тока в любой части разветвленной цепи, если известны сопротивления ее участков и включенные в них ЭДС. Число уравнений, составляемых по первому и второму правилам Кирхгофа, должно равняться числу искомых величин. Используя первое правило Кирхгофа для разветвленной цепи, содержащей m узлов и n ветвей (участков), можно написать (m – 1) независимых уравнений, а используя второе правило, (n m + 1) независимых уравнений.

Приведем пример расчета токов в разветвленной цепи (рис. 4.25).

Рис. 4.25. Пример разветвленной цепи

Направления действия ЭДС показаны синими стрелками. В этой цепи у нас имеется два узла - точки b и d (m = 2), и три ветви - участок b а d с током I 1 , участок b d с током I 2 и участок b c d с током I 3 (n = 3). Значит, мы можем написать одно (m – 1 = 2 – 1 = 1) уравнение на основе первого правила Кирхгофа и два (n m + 1 = 3 – 2 + 1 = 2) уравнения на основе второго правила Кирхгофа. Как же это делается на практике?

Шаг первый. Выберем направления токов, текущих в каждой из ветвей цепи. Как эти направления выбрать - совершенно неважно. Если мы угадали, в окончательном результате значение этого тока получится положительным, если нет и направление должно быть обратным - значение этого тока получится отрицательным. В нашем примере мы выбрали направления токов как показано на рисунке. Важно подчеркнуть, что направления действия ЭДС не произвольны, они определяются способом подключения полюсов источников тока (см. рис. 4.25).

Шаг второй. Записываем первое правило Кирхгофа для всех узлов кроме одного (в последнем узле, выбор которого произволен, это правило будет выполняться автоматически). В нашем случае мы можем записать уравнение для узла b , куда входит ток I 2 и выходят токи I 1 и I 3

Шаг третий. Нам осталось написать уравнения (в нашем случае - два) для второго правила Кирхгофа. Для этого надо выбрать два независимых замкнутых контура. В рассматриваемом примере имеются три такие возможности: путь по левому контуру b a d b , путь по правому контуру b c d b и путь вокруг всей цепи b a d c b . Достаточно взять любые два из них, тогда для третьего контура второе правило Кирхгофа будет выполнено автоматически. Направление обхода контура роли не играет, но при обходе ток будет браться со знаком плюс, если он течет в направлении обхода, и со знаком минус, если ток течет в противоположном направлении. Это же относится к знакам ЭДС.

Возьмем для начала контур b a d b . Мы выходим из точки b и движемся против часовой стрелки. На нашем пути встретятся два тока, I 1 и I 2 , направления которых совпадают с выбранным направлением обхода. ЭДС также действует в этом же направлении. Поэтому второе правило Кирхгофа для этого участка цепи записывается как

В качестве второго замкнутого пути для разнообразия выберем путь b a d c b вокруг всей цепи. На этом пути мы встречаем два тока I 1 и I 3 , из которых первый войдет со знаком плюс, а второй - со знаком минус. Мы встретимся также с двумя ЭДС, из которых войдет в уравнения со знаком плюс, а - со знаком минус. Уравнение для этого замкнутого пути имеет вид

Шаг четвертый. Мы нашли три уравнения для трех неизвестных токов в цепи. Решение произвольной системы линейных уравнений описывается в курсе математики. Для наших целей (цепь достаточна проста) можно просто выразить I 3 через I 1 из уравнения (4.47)

I 2 через I 1 с помощью уравнения (4.46)

и подставить (4.48), (4.49) в уравнение первого правила Кирхгофа (4.45). Это уравнение содержит лишь неизвестное I 1 , которое находится без труда

Подставляя это выражение в (4.48), (4.49), находим соответственно токи I 2 , I 3

Шаг пятый. В найденные формулы подставляют численные значения, коль скоро они заданы. Подсчитаем для примера токи в нашей цепи при одинаковых сопротивлениях R 1 = R 2 = R 3 = 10 Ом, но разных ЭДС Имеем:

Последнее значение получилось отрицательным при данных численных характеристиках цепи. Значит, на самом деле направление тока обратно показанному на рисунке. Это естественно: мощный левый источник посылает ток 0,75 А, часть которого (0,45 А) ответвляется в среднюю ветвь, а остаток - 0,3 А - продолжает течь в том же направлении, чему не может воспрепятствовать маломощная правая батарея.

Примечание. Правила Кирхгофа позволяют в принципе рассчитать сколь угодно сложные цепи. Но вычисления могут быть довольно сложными. Поэтому рекомендуется сначала поискать возможную симметрию цепи. Иногда из соображений симметрии более или менее очевидно, что какие-то токи равны между собой или какие-то напряжения равны нулю (и тогда данный участок цепи можно исключить из рассмотрения). Если такое возможно, вычисления существенно упрощаются.

В нашем примере мы пренебрегли внутренним сопротивлением источников тока. При их наличии они также должны включаться в уравнения второго правила Кирхгофа.

Пример. Два одинаковых источника тока с ЭДС и внутренним сопротивлением r соединяются в батарею. Возможны два варианта соединения - последовательное и параллельное (рис. 4.26). При каком соединении ток в нагрузке R будет наибольшим?

Рис. 4.26. Последовательное (1) и параллельное (2) соединение источников тока

Решение. Расчет особенно прост для последовательного соединения: уравнение первого правила Кирхгофа отсутствует, так как в цепи нет узлов. Единственное уравнение второго закона дает

Сравнивая (4.53) и (4.56), находим, что при R > r ток последовательной батареи больше (I посл > I парал) а при R < r он меньше (I посл < I парал) тока от параллельной батареи. При равенстве внутреннего сопротивления и нагрузки R = r обе батареи дают одинаковый ток.

Два приема, которые применяют для упрощения процесса составления уравнений, необходимых при расчетах сложных разветвленных цепей постоянного тока называют законами (вернее было бы сказать правилами) Кирхгофа. Прежде чем перейти к самим правила Кирхгофа введем два необходимых определения.

Разветвлёнными цепями названы цепи, которые имеют несколько замкнутых контуров, несколько источников электродвижущей силы (ЭДС).

Узлом разветвлённой цепи называют точку, в которой сходятся три или более проводников с токами.

Первый закон (правило) Кирхгофа, простыми словами

Первое правило Кирхгофа называют правилом узлов, так как оно касается сил токов в узах цепи. Словесно первый закон Кирхгофа формулируют следующим образом: Алгебраическая сумма сил токов в узле равна нулю. В виде формулы это правило запишем как:

С каким знаком сила тока будет входить в сумму (1), зависит от произвольного выбора. Но при этом следует считать, что все входящие в узел токи имеют одинаковые знаки, а все исходящие из узла токи имеют противоположные входящим, знаки. Пусть все входящие токи мы примем за положительные, тогда все исходящие их этого узла токи будут отрицательными. Если направления токов изначально не заданы, то их задают произвольно. Если при расчетах получено, что сила тока отрицательна, значит, что верное направление тока является противоположным тому, которое предполагали.

Первый закон Кирхгофа является следствием закона сохранения заряда. Если в цепи текут только постоянные токи, то нет в этой цепи точек, которые накапливали бы заряд. Иначе токи не были бы постоянными.

Первый закон Кирхгофа дает возможность составить независимое уравнение, при наличии в цепи k узлов.

Второй закон (правило) Кирхгофа, простыми словами

Второй закон Кирхгофа относят к замкнутым контурам, поэтому его называют правилом контуров. Согласно этому правилу суммы произведений алгебраических величин сил тока на внешние и внутренние сопротивления всех участков замкнутого контура равны алгебраической сумме величин сторонних ЭДС (), входящих в рассматриваемый контур. В виде формулы второй закон Кирхгофа запишем как:

где величину часто называют падением напряжения; N - число рассматриваемых участков избранного контура. При использовании второго правила Кирхгофа важно помнить о направлении обхода контура. Как это делается? Произвольно выберем направление обхода рассматриваемого в задаче контура (по часовой стрелке или против нее). В случае совпадения направления обхода контура с направлением силы тока в рассматриваемом элементе, величина входит в (2) со знаком плюс. ЭДС войдет в сумму правой части выражения (2) со знаком плюс, если при движении вдоль контура, в соответствии с избранным направлением обхода первым мы встречаем отрицательный полюс источника ЭДС.

Используя второе правило Кирхгофа можно получить независимые уравнения для тех контуров цепи, которые не получены наложением уже описанных контуров. Количестов независимых контуров (n) равно:

где p - количество ветвей в цепи; k - число узлов.

Количество независимых уравнений, которые дадут оба правила Кирхгофа равно (s):

Делаем вывод о том, что число независимых уравнений будет равно числу разных токов в исследуемой цепи.

Второе правило Кирхгофа — следствие закона Ома. В принципе любую цепь можно рассчитать, применяя только закон Ома и закон сохранения заряда. Правила Кирхгофа являются всего лишь упрощающими приемами для решения задач, рассматривающих цепи постоянного тока.

Используя правила Кирхгофа для составления уравнений необходимо внимательно следить за расстановкой знаков токов и ЭДС.

Первое и второе правила Кирхгофа дают метод расчета цепи, то есть используя их можно найти все токи в цепи, если известны все ЭДС и сопротивления, в том числе и внутренние сопротивления источников.

Примеры решения задач

ПРИМЕР 1

Задание Как следует записать уравнение для токов, используя первое правило Кирхгофа для узла А, изображенного на рис.1

Решение Прежде чем применять первое правило Кирхгофа определим для себя, что положительными будут токи, которые входят в узел А, тогда выходящие из этого узла токи мы должны будем записать в первом правиле Кирхгофа со знаком минус. Из рис. 1 в узел А входят токи:

Из узла А выходят токи:

Тогда согласно правилу узлов имеем:

Ответ

ПРИМЕР 2

Задание Составьте систему независимых уравнений, используя правила Кирхгофа, которая позволит найти все токи в цепи, представленной на рис.2, если известны все ЭДС и все сопротивления (они указаны на рисунке)?

Решение Направления токов выберем произвольно, обозначим их на рис.1. Пусть через сопротивление течет ток . На рис.2 видно, что в нашей цепи два узла. Это точки A и С. Запишем первое правило Кирхгофа для узла А:

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

где n - число источников ЭДС в контуре;

m - число элементов с сопротивлением Rk в контуре;

Uk = RkIk - напряжение или падение напряжения на k-м элементе контура.

Для схемы (рисунок 1) запишем уравнение по второму закону Кирхгофа:

Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контуру, включая источники ЭДС равна нулю

При записи уравнений по второму закону Кирхгофа необходимо:

  • 1) задать условные положительные направления ЭДС, токов и напряжений;
  • 2) выбрать направление обхода контура, для которого записывается уравнение;
  • 3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рисунок 1)

контур I: E=RI+R1I1+r0I,

контур II: R1I1+R2I2=0,

контур III: E=RI+R2I2+r0I.

В действующей цепи электрическая энергия источника питания преобразуется в другие виды энергии. На участке цепи с сопротивлением R в течение времени t при токе I расходуется электрическая энергия

Скорость преобразования электрической энергии в другие виды представляет электрическую мощность.Из закона сохранения энергии следует, что мощность источников питания в любой момент времени равна сумме мощностей, расходуемой на всех участках цепи.

Это соотношение называют уравнением баланса мощностей. При составлении уравнения баланса мощностей следует учесть, что если действительные направления ЭДС и тока источника совпадают, то источник ЭДС работает в режиме источника питания, и произведение EI подставляют в со знаком плюс. Если не совпадают, то источник ЭДС работает в режиме потребителя электрической энергии, и произведение EI подставляют в со знаком минус. Для цепи, показанной на рисунке 1 уравнение баланса мощностей запишется в виде:

EI=I2(r0+R)+I12R1+I22R2.

Способы соединений и расчет эквивалентного сопротивления электрической цепи.

Сопротивления в электрических цепях могут быть соединены последовательно, параллельно, по смешанной схеме и по схемам «звезда», «треугольник». Расчет сложной схемы упрощается, если сопротивления в этой схеме заменяются одним эквивалентным сопротивлением Rэкв, и вся схема представляется в виде схемы на рисунке 2, где R=Rэкв, а расчет токов и напряжений производится с помощью законов Ома и Кирхгофа.

Электрическая цепь с последовательным соединением элементов

Рисунок 3

Рисунок 4

Последовательным называют такое соединение элементов цепи, при котором во всех включенных в цепь элементах возникает один и тот же ток I (рисунок 3).

На основании второго закона Кирхгофа общее напряжение U всей цепи равно сумме напряжений на отдельных участках:

U=U1+U2+U3 или IRэкв=IR1+IR2+IR3,

откуда следует

Rэкв=R1+R2+R3.

Таким образом, при последовательном соединении элементов цепи общее эквивалентное сопротивление цепи равно арифметической сумме сопротивлений отдельных участков. Следовательно, цепь с любым числом последовательно включенных сопротивлений можно заменить простой цепью с одним эквивалентным сопротивлением Rэкв (рисунок 4). После этого расчет цепи сводится к определению тока I всей цепи по закону Ом и по вышеприведенным формулам рассчитывают падение напряжений U1,U2,U3 на соответствующих участках электрической цепи (рисунок 3).

Недостаток последовательного включения элементов заключается в том, что при выходе из строя хотя бы одного элемента, прекращается работа всех остальных элементов цепи.

Электрическая цепь с параллельным соединением элементов

Параллельным называют такое соединение, при котором все включенные в цепь потребители электрической энергии, находятся под одним и тем же напряжением (рисунок 5).

Рисунок 5

В этом случае они присоединены к двум узлам цепи а и b, и на основании первого закона Кирхгофа можно записать, что общий ток I всей цепи равен алгебраической сумме токов отдельных ветвей:

I=I1+I2+I3, т.е. откуда следует, что

В том случае, когда параллельно включены два сопротивления R1 и R2, они заменяются одним эквивалентным сопротивлением.

Из соотношения, следует, что эквивалентная проводимость цепи равна арифметической сумме проводимостей отдельных ветвей:

gэкв=g1+g2+g3.

По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается.

Напряжения в электрической цепи с параллельно соединенными сопротивлениями (рисунок 5)

U=IRэкв=I1R1=I2R2=I3R3.

Отсюда следует, что т.е. ток в цепи распределяется между параллельными ветвями обратно пропорционально их сопротивлениям.

По параллельно включенной схеме работают в номинальном режиме потребители любой мощности, рассчитанные на одно и то же напряжение. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных. Поэтому эта схема является основной схемой подключения потребителей к источнику электрической энергии.

Электрическая цепь со смешанным соединением элементов

Смешанным называется такое соединение, при котором в цепи имеются группы параллельно и последовательно включенных сопротивлений.

Рисунок 6

Для цепи, представленной на рисунке 6, расчет эквивалентного сопротивления начинается с конца схемы. Для упрощения расчетов примем, что все сопротивления в этой схеме являются одинаковыми: R1=R2=R3=R4=R5=R. Сопротивления R4 и R5 включены параллельно, тогда сопротивление участка цепи cd равно:

В этом случае исходную схему (рисунок 6) можно представить в следующем виде (рисунок 7):

Рисунок 7

На схеме (рисунок 7) сопротивление R3 и Rcd соединены последовательно, и тогда сопротивление участка цепи ad равно:

Тогда схему (рисунок 8) можно представить в сокращенном варианте (рисунок 9):

Рисунок 8

На схеме (рисунок 8) сопротивление R2 и Rad соединены параллельно, тогда сопротивление участка цепи аb равно

Схему (рисунок 8) можно представить в упрощенном варианте (рисунок 9), где сопротивления R1 и Rab включены последовательно.

Тогда эквивалентное сопротивление исходной схемы (рисунок 6) будет равно:

Рисунок 9

Рисунок 10

В результате преобразований исходная схема (рисунок 7) представлена в виде схемы (рисунок 10) с одним сопротивлением Rэкв. Расчет токов и напряжений для всех элементов схемы можно произвести по законам Ома и Кирхгофа.

Рисунок 1.1 Схема рассчитываемой цепи постоянного тока

Е1 = 40В, Е2=30В,

R1 = 52Ом, R2=24Ом,

R3=43Ом, R4=36Ом,

R5=61Ом, R6=12 Ом,

r01 = 1 Ом, r02=2 Ом.

Определить токи во всех ветвях схемы, используя метод контурных токов.

Метод контурных токов основан на использовании только второго закона Кирхгофа. Это позволяет уменьшить число уравнений в системе на n - 1 .

Достигается это разделением схемы на ячейки (независимые контуры) и введением для каждого контура-ячейки своего тока -- контурного тока, являющегося расчетной величиной.

Итак, в заданной цепи (рис. 1.1) можно рассмотреть три контура-ячейки (1, 2, 3) и ввести для них контурные токи Ik1, Ik2, Ik3.

Контуры-ячейки имеют ветвь, не входящую в другие контуры -- это внешние ветви. В этих ветвях контурные токи являются действительными токами ветвей.

Ветви, принадлежащие двум смежным контурам, называются смежными ветвями. В них действительный ток равен алгебраической сумме контурных токов смежных контуров, с учетом их направления.

При составлении уравнений по второму закону Кирхгофа в левой части равенства алгебраически суммируются ЭДС источников, входящих в контур-ячейку, в правой части равенства алгебраически суммируются напряжения на сопротивлениях, входящих в этот контур, а также учитывается падение напряжения на сопротивлениях смежной ветви, определяемое по контурному току соседнего контура.

На основании вышеизложенного порядок расчета цепи методом контурных токов будет следующим:

стрелками указываем выбранные направления контурных токов Ik1, Ik2, Ik3 в контурах-ячейках. Направление обхода контуров принимаем таким же;

составляем уравнения и решаем систему уравнений или методом подстановки,

или с помощью определителей.

  • -E1=Ik1·(R1+r01+ R4 +R5)-Ik2· R4-Ik3·R5
  • -E2=-Ik2·(R2+r02+R3+ R4)-Ik1·R4-Ik3·(R2+r02)

E2=Ik3·(R2+r02+R5+R6)-Ik1·R5-Ik2· (R2+r02)

Подставляем в уравнение численные значения ЭДС и сопротивлений.

  • -40=Ik1·(52+1+36+61)-Ik2·36-Ik3·61
  • -30=Ik2·(24+2+43+36)-Ik1·36-Ik3·(24+2)
  • 30=Ik3·(24+2+61+16)-Ik1·61-Ik2·(24+2)
  • -40=Ik1·150-Ik2·36-Ik3·61
  • -30=Ik2·105-Ik1·36-Ik3·26
  • 30=Ik3·103-Ik1·61-Ik2·26
  • -40=Ik1·150-Ik2·36-Ik3·61
  • -30=- Ik1·36+Ik2·105-Ik3·26
  • 30=-Ik1·61-Ik2·26+Ik3·103

Решим систему с помощью определителей. Вычислим определитель системы? и чaстные определители?1, ?2, ?3.


Вычисляем контурные токи:

Ik1=?1/?=-3.442/8.825= -0.39 А

Ik2=?2/?=-3.807/8.825= -0.431 А

Ik3=?3/?=-4.29/8.825= -0.049 А

Тогда токи ветвей будут равны:

I1=- Ik1=0.39 А

I2= Ik3- Ik2= -0.049+0.431=0.383 А

I3= - Ik2=0.431 А

I4= Ik1 -Ik2= -0.39+0.431=0.041 А

I5= Ik3 -Ik1= -0.049+0.39=0.341 А

I6= Ik3= -0.049 А

Определить токи во всех ветвях схемы на основании метода наложения.

По методу наложения ток в любом участке цепи рассматривается как алгебраическая сумма частных токов, созданных каждой ЭДС в отдельности.

а) Определяем частные токи от ЭДС Е1, при отсутствии ЭДС Е2, т.е. рассчитываем цепь по рис. 1.2.

Рис 1.2.

Показываем направление частных токов при ЭДС Е1 и обозначаем буквой I с одним штрихом(`).

Решаем задачу методом "свёртывания".

Преобразовываем треугольник сопротивлений R2-R3-R4 в эквивалентную звезду Rb/- Rc/- Rd/.


Рис 1.2.2

б) определяем частные токи от ЭДС Е2, при отсутствии ЭДС Е1, т.е. рассчитываем цепь по рис.1.3

Показываем направление частных токов при ЭДС Е2 и обозначаем их буквой I с двумя штрихами (“).

Рис 1.3.

Рис 1.3.2 Преобразованная схема при выведенном E1


Вычисляем токи ветвей исходной цепи (рис. 1.1), выполняя алгебраическое сложение частных токов, учитывая их направление:

Составить баланс мощностей для заданной схемы.

Источники Е1 и Е2 вырабатывают электрическую энергию, т.к. направление ЭДС и тока в ветвях с источником совпадают. Баланс мощностей для заданной цепи запишется так:

Подставляем численные значения и вычисляем:

С учетом погрешности расчетов баланс мощностей получился.

Результаты расчетов токов по пунктам 2 и 3 представить в виде таблицы и сравнить.

Расчет токов ветвей обоими методами с точностью до трех знаков после запятой практически одинаков

Определить ток во второй ветви методом эквивалентного генератора.

Метод эквивалентного генератора используется для исследования работы какого-либо участка в сложной электрической цепи.

Для решения задачи методом эквивалентного генератора разделим электрическую цепь на две части: потребитель (исследуемая ветвь с сопротивлением R2, в которой требуется определить величину тока) и эквивалентный генератор (оставшаяся часть цепи, которая для потребителя R2 служит источником электрической энергии, т.е. генератором).

Получается схема замещения (рис. 1.4.1).

Рис. 1.4.1.

На схеме искомый ток I2 определим по закону Ома для замкнутой цепи:

Где Еэ - ЭДС эквивалентного генератора, ее величину определяют как напряжение на зажимах генератора в режиме холостого хода,

Еэ=Uхх, Rэ - внутреннее сопротивление эквивалентного генератора, его величина рассчитывается как эквивалентное сопротивление пассивного двухполюсника относительно исследуемых зажимов.

Изображаем схему эквивалентного генератора в режиме холостого хода (рис.1.4.2), т.е. при отключенном потребителе R2. Производим расчет напряжения в месте отключения R2.

Рис. 1.4.2.


Для расчета внутреннего сопротивления эквивалентного генератора необходимо преобразовать активный двухполюсник в пассивный (рис. 1.4.1), при этом ЭДС из схемы исключается, а внутренне сопротивление этих источников в схеме остаются.

Используем преобразование схемы, проведенное при расчетах в п. 1.3.б.

Вычисляем эквивалентное сопротивление схемы (рис. 1.4.2) относительно зажимов a и c.

Зная ЭДС и внутреннее сопротивление эквивалентного генератора, вычисляем ток в исследуемой ветви:

т.е. ток в этой ветви получился практически таким же, как и в пунктах 2 и 3.

Построить потенциальную диаграмму для любого замкнутого контура, включающего обе ЭДС.

Возьмем контур acbda. Зададимся обходом контура по часовой стрелке. Заземлим одну из точек контура, пусть это будет точка a. Потенциал этой точки равен нулю цa=0 (рис. 1.1)

Зная величину и направление токов ветвей и ЭДС, а также величины сопротивлений, вычислим потенциалы всех точек контура при переходе от элемента к элементу. Начнем обход от точки a.


Строим потенциальную диаграмму. По оси абсцисс откладываем сопротивление контура в той последовательности, в которой производим обход контура, прикладывая, сопротивления друг, к другу, по оси ординат потенциалы точек с учетом их знака.

Что еще почитать