Кто такой эйлер придумавший круги эйлера. Решение задач с помощью «кругов эйлера. Решение задач с помощью кругов Эйлера

Разделы: Информатика

1. Введение

В курсе Информатики и ИКТ основной и старшей школы рассматриваются такие важные темы как “Основы логики” и “Поиск информации в Интернет”. При решении определенного типа задач удобно использовать круги Эйлера (диаграммы Эйлера-Венна).

Математическая справка. Диаграммы Эйлера-Венна используются прежде всего в теории множеств как схематичное изображение всех возможных пересечений нескольких множеств. В общем случае они изображают все 2 n комбинаций n свойств. Например, при n=3 диаграмма Эйлера-Венна обычно изображается в виде трех кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.

2. Представление логических связок в поисковых запросах

При изучении темы “Поиск информации в Интернет” рассматриваются примеры поисковых запросов с использованием логических связок, аналогичным по смыслу союзам “и”, “или” русского языка. Смысл логических связок становится более понятным, если проиллюстрировать их с помощью графической схемы – кругов Эйлера (диаграмм Эйлера-Венна).

Логическая связка Пример запроса Пояснение Круги Эйлера
& - “И” Париж & университет Будут отобраны все страницы, где упоминаются оба слова: Париж и университет Рис.1
| - “ИЛИ” Париж | университет Будут отобраны все страницы, где упоминаются слова Париж и/или университет Рис.2

3. Связь логических операций с теорией множеств

С помощью диаграмм Эйлера-Венна можно наглядно представить связь логических операций с теорией множеств. Для демонстрации можно воспользоваться слайдами в Приложение 1.

Логические операции задаются своими таблицами истинности. В Приложении 2 подробно рассматриваются графические иллюстрации логических операций вместе с их таблицами истинности. Поясним принцип построения диаграммы в общем случае. На диаграмме – область круга с именем А отображает истинность высказывания А (в теории множеств круг А – обозначение всех элементов, входящих в данное множество). Соответственно, область вне круга отображает значение “ложь” соответствующего высказывания. Что бы понять какая область диаграммы будет отображением логической операции нужно заштриховать только те области, в которых значения логической операции на наборах A и B равны “истина”.

Например, значение импликации равно “истина” в трех случаях (00, 01 и 11). Заштрихуем последовательно: 1) область вне двух пересекающихся кругов, которая соответствует значениям А=0, В=0; 2) область, относящуюся только к кругу В (полумесяц), которая соответствует значениям А=0, В=1; 3) область, относящуюся и к кругу А и к кругу В (пересечение) – соответствует значениям А=1, В=1. Объединение этих трех областей и будет графическим представлением логической операции импликации.

4. Использование кругов Эйлера при доказательстве логических равенств (законов)

Для того, чтобы доказать логические равенства можно применить метод диаграмм Эйлера-Венна. Докажем следующее равенство ¬(АvВ) = ¬А&¬В (закон де Моргана).

Для наглядного представления левой части равенства выполним последовательно: заштрихуем оба круга (применим дизъюнкцию) серым цветом, затем для отображения инверсии заштрихуем область за пределами кругов черным цветом:

Рис.3 Рис.4

Для визуального представления правой части равенства выполним последовательно: заштрихуем область для отображения инверсии (¬А) серым цветом и аналогично область ¬В также серым цветом; затем для отображения конъюнкции нужно взять пересечение этих серых областей (результат наложения представлен черным цветом):

Рис.5 Рис.6 Рис.7

Видим, что области для отображения левой и правой части равны. Что и требовалось доказать.

5. Задачи в формате ГИА и ЕГЭ по теме: “Поиск информации в Интернет”

Задача №18 из демо-версии ГИА 2013.

В таблице приведены запросы к поисковому серверу. Для каждого запроса указан его код – соответствующая буква от А до Г. Расположите коды запросов слева направо в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу.

Код Запрос
А (Муха & Денежка) | Самовар
Б Муха & Денежка & Базар & Самовар
В Муха | Денежка | Самовар
Г Муха & Денежка & Самовар

Для каждого запроса построим диаграмму Эйлера-Венна:

Запрос А Запрос Б

Запрос В

Запрос Г

Ответ: ВАГБ.

Задача В12 из демо-версии ЕГЭ-2013.

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

Запрос Найдено страниц (в тысяч)
Фрегат | Эсминец 3400
Фрегат & Эсминец 900
Фрегат 2100

Какое количество страниц (в тысячах) будет найдено по запросу Эсминец ?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Ф – количество страниц (в тысячах) по запросу Фрегат ;

Э – количество страниц (в тысячах) по запросу Эсминец ;

Х – количество страниц (в тысячах) по запросу, в котором упоминается Фрегат и не упоминается Эсминец ;

У – количество страниц (в тысячах) по запросу, в котором упоминается Эсминец и не упоминается Фрегат.

Построим диаграммы Эйлера-Венна для каждого запроса:

Запрос Диаграмма Эйлера-Венна Количество страниц
Фрегат | Эсминец Рис.12

3400
Фрегат & Эсминец Рис.13

900
Фрегат Рис.14 2100
Эсминец Рис.15 ?

Согласно диаграммам имеем:

  1. Х+900+У = Ф+У = 2100+У = 3400. Отсюда находим У = 3400-2100 = 1300.
  2. Э = 900+У = 900+1300= 2200.

Ответ: 2200.

6. Решение логических содержательных задач методом диаграмм Эйлера-Венна

В классе 36 человек. Ученики этого класса посещают математический, физический и химический кружки, причем математический кружок посещают 18 человек, физический - 14 человек, химический - 10. Кроме того, известно, что 2 человека посещают все три кружка, 8 человек - и математический и физический, 5 и математический и химический, 3 - и физический и химический.

Сколько учеников класса не посещают никаких кружков?

Для решения данной задачи очень удобным и наглядным является использование кругов Эйлера.

Самый большой круг – множество всех учеников класса. Внутри круга три пересекающихся множества: членов математического (М ), физического (Ф ), химического (Х ) кружков.

Пусть МФХ – множество ребят, каждый из которых посещает все три кружка. МФ¬Х – множество ребят, каждый из которых посещает математический и физический кружки и не посещает химический. ¬М¬ФХ - множество ребят, каждый из которых посещает химический кружок и не посещает физический и математический кружки.

Аналогично введем множества: ¬МФХ, М¬ФХ, М¬Ф¬Х, ¬МФ¬Х, ¬М¬Ф¬Х.

Известно, что все три кружка посещают 2 человека, следовательно, в область МФХ впишем число 2. Т.к. 8 человек посещают и математический и физический кружки и среди них уже есть 2 человека, посещающих все три кружка, то в область МФ¬Х впишем 6 человек (8-2). Аналогично определим количество учащихся в остальных множествах:

Просуммируем количество человек по всем областям: 7+6+3+2+4+1+5=28. Следовательно, 28 человек из класса посещают кружки.

Значит, 36-28 = 8 учеников не посещают кружки.

После зимних каникул классный руководитель спросил, кто из ребят ходил в театр, кино или цирк. Оказалось, что из 36 учеников класса двое не были ни в кино. ни в театре, ни в цирке. В кино побывало 25 человек, в театре - 11, в цирке 17 человек; и в кино, и в театре - 6; и в кино и в цирке - 10; и в театре и в цирке - 4.

Сколько человек побывало и в кино, и в театре, и в цирке?

Пусть х – количество ребят, которые побывали и в кино, и в театре, и в цирке.

Тогда можно построить следующую диаграмму и посчитать количество ребят в каждой области:

В кино и театре побывало 6 чел., значит, только в кино и театре (6-х) чел.

Аналогично, только в кино и цирке (10-х) чел.

Только в театре и цирке (4-х) чел.

В кино побывало 25 чел., значит, из них только в кино были 25 - (10-х) – (6-х) – х = (9+х).

Аналогично, только в театре были (1+х) чел.

Только в цирке были (3+х) чел.

Не были в театре, кино и цирке – 2 чел.

Значит, 36-2=34 чел. побывали на мероприятиях.

С другой стороны можем просуммировать количество человек, которые были в театре, кино и цирке:

(9+х)+(1+х)+(3+х)+(10-х)+(6-х)+(4-х)+х = 34

Отсюда следует, что только один человек побывал на всех трех мероприятиях.

Таким образом, круги Эйлера (диаграммы Эйлера-Венна) находят практическое применение при решении задач в формате ЕГЭ и ГИА и при решении содержательных логических задач.

Литература

  1. В.Ю. Лыскова, Е.А. Ракитина. Логика в информатике. М.: Информатика и Образование, 2006. 155 с.
  2. Л.Л. Босова. Арифметические и логические основы ЭВМ. М.: Информатика и образование, 2000. 207 с.
  3. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 8 класса: БИНОМ. Лаборатория знаний, 2012. 220 с.
  4. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 9 класса: БИНОМ. Лаборатория знаний, 2012. 244 с.
  5. Сайт ФИПИ: http://www.fipi.ru/

Не потеряйте. Подпишитесь и получите ссылку на статью себе на почту.

Круги Эйлера представляют собой особую геометрическую схему, необходимую для поиска и более наглядного отображения логических связей между понятиями и явлениями, а также для изображения отношений между определенным множеством и его частью. Благодаря наглядности они значительно упрощают любые рассуждения и помогают быстрее находить ответы на вопросы.

Автором кругов является известный математик Леонард Эйлер, который считал, что они необходимы, чтобы облегчить размышления человека. С момента своего появления метод приобрел широкую популярность и признание.

Леонард Эйлер – российский, немецкий и швейцарский математик и механик. Внес огромный вклад в развитие математики, механики, астрономии и физики, а также ряда прикладных наук. Написал больше 850 научных работ по теории чисел, теории музыки, небесной механике, оптике, баллистике и другим направлениям. Среди этих работ несколько десятков фундаментальных монографий. Половину жизни Эйлер прожил в России и оказал большое влияние на становление российской науки. Многие его труды написаны на русском языке.

Позже круги Эйлера использовали в своих работах многие известные ученые, к примеру, чешский математик Бернард Больцано, немецкий математик Эрнест Шредер, английский философ и логик Джон Венн и другие. Сегодня методика служит основной многих упражнений на развитие мышления, в том числе и упражнений из нашей бесплатной онлайн-программы « ».

Для чего нужны круги Эйлера

Круги Эйлера имеют прикладное значение, ведь с их помощью можно решать множество практических задач на пересечение или объединение множеств в логике, математике, менеджменте, информатике, статистике и т.д. Полезны они и в жизни, т.к., работая с ними, можно получать ответы на многие важные вопросы, находить массу логических взаимосвязей.

Есть несколько групп кругов Эйлера:

  • равнозначные круги (рисунок 1 на схеме);
  • пересекающиеся круги (рисунок 2 на схеме);
  • подчиненные круги (рисунок 3 на схеме);
  • соподчиненные круги (рисунок 4 на схеме);
  • противоречащие круги (рисунок 5 на схеме);
  • противоположные круги (рисунок 6 на схеме).

Посмотрите схему:

Но в упражнениях на развитие мышления чаще всего встречаются два вида кругов:

  • Круги, описывающие объединения понятий и демонстрирующие вложенность одного в другое. Посмотрите пример:

  • Круги, описывающие пересечения разных множеств, имеющих некоторые общие признаки. Посмотрите пример:

Результат использования кругов Эйлера проследить на этом примере очень просто: обдумывая, какую профессию выбрать, вы можете либо долго рассуждать, пытаясь понять, что больше подойдет, а можете нарисовать аналогичную диаграмму, ответить на вопросы и сделать логический вывод.

Применять метод очень просто. Также его можно назвать универсальным – подходящим для людей всех возрастов: от детей дошкольного возраста (в детских садах детям преподают круги, начиная с 4-5-летнего возраста) до студентов (задачи с кругами есть, к примеру, в тестах ЕГЭ по информатике) и ученых (круги широко применяются в академической среде).

Типичный пример кругов Эйлера

Чтобы вы могли лучше понять, как «работают» круги Эйлера, рекомендуем познакомиться с типичным примером. Обратите внимание на нижеследующий рисунок:

На рисунке зеленым цветов отмечено наибольшее множество, представляющее собой все варианты игрушек. Один из них – это конструкторы (голубой овал). Конструкторы – это отдельное множество само по себе, но в то же время и часть общего множества игрушек.

Заводные игрушки (фиолетовый овал) тоже относятся к множеству игрушек, однако к множеству конструктора они отношения не имеют. Зато заводной автомобиль (желтый овал), пусть и является самостоятельным явлением, но считается одним из подмножеств заводных игрушек.

По подобной схеме строятся и решаются многие задачи (включая и задания на развитие когнитивных способностей), задействующие круги Эйлера. Давайте разберем одну такую задачу (кстати, именно ее в 2011 году внесли на демонстрационный тест ЕГЭ по информатике и ИКТ).

Пример решения задачи с помощью кругов Эйлера

Условия задачи таковы: приведенная таблица показывает, сколько страниц было найдено в Интернете по конкретным запросам:

Вопрос задачи: сколько страниц (в тысячах) выдаст поисковик по запросу «Крейсер и линкор»? При этом нужно учитывать, что все запросы выполняются примерно в одно и то же время, поэтому набор страниц с искомыми словами со времени выполнения запросов остался неизменным.

Решается задача так: с помощью кругов Эйлера изображаются условия задачи, а цифрами «1», «2» и «3» обозначаются полученные в результате сегменты:

Учитывая условия задачи, составляем уравнения:

  1. Крейсер/линкор: 1+2+3 = 7 000;
  2. Крейсер: 1+2 = 4 800;
  3. Линкор: 2+3 = 4 500.

Чтобы определить количество запросов «Крейсер и линкор» (сегмент обозначен цифрой «2» на рисунке), подставим в уравнение 1 уравнение 2 и получим:

4 800 + 3 = 7 000, а значит, что 3 = 2 200 (т.к. 7 000-4 800 = 2 200).

2 + 2 200 = 4 500, а это означает, что 2 = 2 300 (т.к. 4 500-2 200 = 2 300).

Ответ: по запросу «Крейсер и линкор» будет найдено 2 300 страниц.

Этот пример наглядно демонстрирует, что с помощью кругов Эйлера можно достаточно быстро и просто решать сложные задачи.

Резюме

Круги Эйлера – это очень полезная методика решения задач и установления логических связей, а заодно и занимательный и интересный способ провести время и потренировать мозг. Так что, если вам хочется совместить приятное с полезным и поработать головой, предлагаем пройти наш курс « », включающий в себя самые разные задания, в том числе и круги Эйлера, эффективность которых научно обоснована и подтверждена многолетней практикой.

П О Н Я Т И Е

Каждый предмет или явление обладает некими свойствами (признаками).

Получается, что составить понятие об объекте означает, прежде всего, умение отличить его от других сходных с ним объектов.

Можно сказать, что понятие – это мысленное содержание слова.

Понятие – это форма мысли, отображающая предметы в их наиболее общих и существенных признаках*.

Понятие – это форма мысли, а не форма слова, так как слово лишь метка, которой мы помечаем ту или иную мысль.

Слова могут быть различны, но при этом обозначать одно и то же понятие. По-русски – «карандаш», по-английски – «pencil», по-немецки – bleistift. Одна и та же мысль в разных языках имеет разное словесное выражение.

ОТНОШЕНИЯ МЕЖДУ ПОНЯТИЯМИ. КРУГИ ЭЙЛЕРА.

Понятия, имеющие в своих содержаниях общие признаки, называются СРАВНИМЫМИ («адвокат» и «депутат»; «студент» и «спортсмен»).

В противном случае, понятия считаются НЕСРАВНИМЫМИ («крокодил» и «блокнот»; «человек» и «пароход»).

Если кроме общих признаков понятия имеют и общие элементы объёма, то они называются СОВМЕСТИМЫМИ .

Существует шесть видов отношений между сравнимыми понятиями. Отношения между объёмами понятий удобно обозначать с помощью кругов Эйлера (круговые схемы, где каждый круг обозначает объём понятия).

ВИД ОТНОШЕНИЯ МЕЖДУ ПОНЯТИЯМИ

ИЗОБРАЖЕНИЕ С ПОМОЩЬЮ КРУГОВ ЭЙЛЕРА

РАВНОЗНАЧНОСТЬ (ТОЖДЕСТВЕННОСТЬ)

Объёмы понятий полностью совпадают.

Т.е. это понятия, которые различаются по содержанию, но в них мыслятся одни и те же элементы объёма.

1) А – Аристотель

В – основатель логики

2) А – квадрат

В – равносторонний прямоугольник

ПОДЧИНЕНИЕ (СУБОРДИНАЦИЯ)

Объём одного понятия полностью входит в объём другого, но не исчерпывает его.

1) А – человек

В – студент

2) А – животное

ПЕРЕСЕЧЕНИЕ (ПЕРЕКРЕЩИВАНИЕ)

Объёмы двух понятий частично совпадают. То есть понятия содержат общие элементы, но и включают элементы, принадлежащие только одному из них.

1) А – юрист

В – депутат

2) А – студент

В – спортсмен

СОПОДЧИНЕНИЕ (КООРДИНАЦИЯ)

Понятия, не имеющие общих элементов, полностью входят в объём третьего, более широкого понятия.

1) А – животное

В – кот; С – собака; D – мышь

2) А – драгоценный металл

В – золото; С – серебро;

D - платина

ПРОТИВОПОЛОЖНОСТЬ (КОНТРАРНОСТЬ)

Понятия А и В не просто включены в объём третьего понятия, а как бы находятся на его противоположных полюсах. То есть, понятие А имеет в своём содержании такой признак, которых в понятии В заменён на противополжный.

1) А – белый кот; В – рыжий кот

(коты бывают и чёрными и серыми)

2) А – горячий чай; холодный чай

(чай может быть и тёплым)

Т.е. понятия А и В не исчерпывают всего объёма понятия, в которое они входят.

ПРОТИВОРЕЧИЕ (КОНТРАДИКТОРНОСТЬ)

Отношение между понятиями, одно из которых выражает наличие каких-либо признаков, а другое – их отсутствие, то есть просто отрицает эти признаки, не заменяя их никакими другими.

1) А – высокий дом

В – невысокий дом

2) А – выигрышный билет

В – невыигрышный билет

Т.е. понятия А и не-А исчерпывают весь объём понятия, в которое они входят, так как между ними нельзя поставить никакое дополнительное понятие.

Упражнение: Определите вид отношений по объёму приведённых ниже понятий. Изобразите их с помощью кругов Эйлера.

1) А – горячий чай; В – холодный чай; С – чай с лимоном

Горячий чай (В) и холодный чай (С) – находятся

в отношении противоположности.

Чай с лимоном (С) может быть как горячим,

так и холодным, но может быть и, например, тёплым.

2) А – деревянный; В – каменный; С – строение; D – дом.

Всякое ли строение (С) – дом (D)? – Нет.

Всякий ли дом (D) – строение (С)? – Да.

Что-то деревянное (А) обязательно ли дом (D) или строение (С) – Нет.

Но можно найти деревянное строение (например, будка),

также можно найти деревянный дом.

Что-то каменное (В) не обязательно дом (D) или строение (С).

Но может быть и каменное строение, и каменный дом.

3) А – российский город; В – столица России;

С – Москва; D – город на Волге; Е – Углич.

Столица России (В) и Москва (С) – один и тот же город.

Углич (Е) является городом на Волге (D).

При этом, Москва, Углич, как и любой город на Волге,

являются российскими городами (А)

Круги Эйлера - одна из самых простых тем, которые необходимы Вам для поступления в 5 класс физико-математических лицеев . На самом деле, круги Эйлера - это ни что иное, как графическое представление множеств. Объекты, обладающие определённым свойством находятся внутри круга Эйлера-Венна , не обладающие - находятся вне. Разумеется, обычно на диаграмме присутствует не один круг, а несколько, каждый из которых объединяет объекты с каким-то своим свойством. Любая задача из данного блока сводится к тому, что необходимо посчитать количество элементов в какой-либо области. Разберём на примерах, что же надо делать:

Задачи на множества людей

В классе учится учеников. изучают английский, немецкий и французский. Ни одного языка не знают человека. Также известно, что из всех ребят только один мальчик изучает языка: английский и французский. Сколько человек изучает языка?

Для решения задачи обозначим количество искомых учеников за (тех, кто изучает языка). Количество учеников, изучающих другое количество языков выразим через и условия в задаче. Диаграмма Эйлера-Венна в данном случае будет выглядеть следующим образом: Например, ребята, которые знают только английский язык, обозначены красным цветом и их количество .

Заметим, что у нас никак не использовано общее количество учеников - это условие и породит то самое уравнение, с помощью которого решится задача:





Получается, что все языка изучают человек (Можете теперь, зная , самостоятельно восстановить сколько каких учеников было в классе и проверить ответ)

Задачи на делимость (сложная делимость)

Это задачи уже повышенной сложности. Предварительно советуем изучить тему . Обязательно к прочтению только тем, кто собирается занимать призовые места.

Для скольких чисел между и верно следующее утверждение: число делится на или не делится на ?

Такое страшное и непонятное условие становится простым, если воспользоваться кругами Эйлера . Понятно, что в этой задаче рассматриваются числа, которые - нас интересуют те, что внутри соответствующего круга. Также есть числа, которые vdots 12 - нас интересуют числа, которые вне. А что же с числами, которые принадлежат обоим множествам? Во-первых, каким общим свойством они обладают, а во-вторых, интересуют ли они нас?

Сначала ответим на первый вопрос. Оказывается, если число одновременно делится на два других числа, то оно делится на Наименьшее Общее Кратное этих двух чисел, то есть на минимальное число, которое делится без остатка на оба исследуемых. Для чисел и НОК есть ничто иное, как число , так как и , а меньше числа с такими свойствам нет. Итого, в пересечении наших множеств лежат числа, которые .

Далее необходимо заметить, что в условии употреблено слово "ИЛИ" . Это значит, что для искомых чисел должно быть верно ХОТЯ БЫ ОДНО из предложенных утверждений (возможно и оба). То есть нам подходят числа которые внутри круга чисел, которые , а также все числа, которые вне круга .

Итак, диаграмма Эйлера-Венна выглядит следующим образом: Штриховкой обозначены те числа, которые и надо найти. Теперь, надеюсь, очевидно, что нам необходимо найти, сколько всего числе в рассматриваемой задаче, из этого количества вычесть количество чисел, которые и прибавить количество чисел, которые .

Итак, приступим:


Получается, что искомых чисел

Итак, подведём итог. Если Вы собираетесь поступать в 5 класс физико-математического лицея , то общие знания по кругам Эйлера-Венна Вам необходимы. Основная область применения - задачи, где присутствуют множества объектов, обладающих определёнными свойствами, и необходимо найти количество объектов обладающих (или не обладающих) совокупностью указанных свойств.

Круги́ Э́йлера — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Круги изобретены Леонардом Эйлером. Используется в математике, логике, менеджменте и других прикладных направлениях. Важный частный случай кругов Эйлера — диаграммы Эйлера — Венна, изображающие все 2n комбинаций n свойств, то есть конечную булеву алгебру. При n = 3 диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.
Леона́рд Э́йлер — швейцарский (родился), немецкий(учился и работал) и российский математик (работал и умер), внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Эйлер, автор более 800 работ: по математическому анализу, дифференциальной геометрии и теории чисел. А так же работ, по приближённым вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки.
Леонард Эйлер родился в 1707 году в семье базельского пастора, друга семьи Бернулли. Рано проявил математические способности. Начальное обучение получил дома под руководством отца, учившегося некогда математике у Якоба Бернулли. Пастор готовил старшего сына к духовной карьере, однако занимался с ним и математикой — как в качестве развлечения, так и для развития логического мышления. Одновременно с обучением в гимназии мальчик увлечённо занимался математикой, а в последние гимназические годы посещал университетские лекции младшего брата Якоба, Иоганна Бернулли.
20 октября 1720 года 13-летний Леонард Эйлер стал студентом факультета искусств Базельского университета. Но любовь к математике направила Леонарда по иному пути. Вскоре способный мальчик обратил на себя внимание профессора Иоганна Бернулли. Он передал одарённому студенту математические статьи для изучения, а по субботам пригласил приходить к нему домой, чтобы совместно разбирать непонятное. В доме своего учителя Эйлер познакомился и подружился с сыновьями Бернулли — Даниилом и Николаем, также увлечённо занимавшимися математикой.
Юный Эйлер написал несколько научных работ. Одна из них, «Диссертация по физике о звуке», получившая благоприятный отзыв, была представлена на конкурс для замещения неожиданно освободившейся в Базельском университете должности профессора физики (1725). Но, несмотря на положительный отзыв, 19-летнего Эйлера сочли слишком юным, чтобы включить в число кандидатов на профессорскую кафедру. Надо отметить, что число научных вакансий в Швейцарии было совсем невелико. Поэтому братья Даниил и Николай Бернулли уехали в Россию, где как раз шла организация Академии наук; они обещали похлопотать там и о должности для Эйлера.
В начале зимы 1726 года Эйлеру сообщили из Санкт - Петербурга: по рекомендации братьев Бернулли он приглашён на должность адъюнкта по физиологии с окладом 200 рублей. 5 апреля 1727 года Эйлер навсегда покинул Швейцарию. Почти полжизни Эйлер провёл в России, где внёс существенный вклад в становление российской науки. В 1726 году он был приглашён работать в Санкт - Петербург, куда переехал подом позже. С 1731 по 1741, а также с 1766 года был академиком Петербургской Академии Наук (в 1741—1766 годах работал в Берлине, оставаясь одновременно почётным членом Петербургской Академии). Хорошо знал русский язык, а сочинения и учебники публиковал на русском.

Что еще почитать