Составьте уравнение реакции полимеризации полистирола. Уравнения полимеризации. Производство блочного полистирола общего назначения до неполной конверсии мономера в каскаде реакторов с перемешиванием

Полистирол вспенивающийся (ПСВ), с поверхностной обработкой частиц, производится методом суспензионной полимеризации стирола в присутствии пентана и полимеризацией в массе. Полистирол выпускается в виде сферических частиц (бисер), поверхность которых обработана различными веществами, улучшающими технологичность полимера при переработке и придающими ему новые свойства (например, антистатические свойства, негорючесть).

При производстве вспенивающегося полистирола основными являются способы суспензионной полимеризации и полимеризации в массе . Наиболее современным и эффективным является второй способ получения ВПС.

Полимеризация в массе вспенивающегося полистирола

Метод производства полистиролов полимеризацией в массе (блочный полистирол) с неполной конверсией мономеров является в настоящее время одним из наиболее распространенных в силу высоких технико-экономических показателей. Большинство современных производств работают именно по этой схеме, как наиболее производительной. Этот метод имеет оптимальную непрерывную схему технологического процесса. Процесс осуществляется в последовательно соединенных 2-3 аппаратах с мешалками; заключительную стадию процесса часто проводят в аппарате колонного типа.

Начальная температура реакции 80-100°С, конечная 200-220 °С. Полимеризацию прерывают при степени превращения стирола 80-90%. Непрореагировавший мономер удаляют из расплава под вакуумом, а затем с водяным паром до содержания стирола в полимере 0,01-0,05%. В полистирол вводят стабилизаторы, красители, антипирены и другие добавки и гранулируют. Полистирол отличается высокой чистотой. Эта технология наиболее экономична (в ней отсутствуют операции промывки, обезвоживания и сушки мелкодисперсных продуктов) и практически безотходна (непрореагировавший стирол возвращается на полимеризацию).

Проведение процесса до неполной конверсии мономера (80-90%) позволяет использовать высокие скорости полимеризации, контролировать температурные параметры, обеспечивать допустимые вязкости полимеризуемой среды. При проведении процесса до более глубоких степеней превращения мономера, затрудняется отвод тепла от высоковязкой реакционной массы, становится невозможным вести полимеризацию в изотермическом режиме. Эта особенность процесса полимеризации в массе привела к тому, что все большее внимание уделяется другим способам производства, и, в первую очередь, суспензионному методу.

Суспензионная полимеризация

Полимеризация в суспензии — конкурирующий технологический процесс, основан на малой растворимости виниловых мономеров в воде и на нейтральности последней в реакциях радикальной полимеризации. Суспензионный метод производства проводится в реакторе, это полунепрерывный процесс, который характеризуется наличием дополнительных технологических стадий (создание реакционной системы, выделение полученного полимера) и периодическим использованием оборудования на стадии полимеризации. Стирол суспендируют в деминерализованной воде, используя стабилизаторы эмульсии; инициатор полимеризации (органические пероксиды) растворяют в каплях мономера, где и происходит полимеризация. В результате образуются крупные гранулы в суспензии полимера в воде. Полимеризацию ведут при постепенном повышении температуры от 40 до 130°С под давлением в течение 8-14 часов. Из полученной суспензии полимер выделяют центрифугированием, после чего его промывают и сушат. Затем на виброситах сортируют по маркам. При этом процессе существенно облегчены теплоотвод и перемешивание компонентов системы.

Применяется:

  • в производстве пенополистирольных блоков и плит различной конфигурации зданий и помещений любого назначения (стены, крыша, пол, склады, павильоны, жилые дома, гаражи, подвалы, лоджии);
  • в изготовлении упаковки сложной формы для различных приборов, требующих защиты от удара при хранении и транспортировке;
  • в изготовлении комплектующих деталей автомобилей;
  • в получении полистиролбетона — легкого бетона на цементном вяжущем и вспененном полистирольном наполнителе, применяемого в изготовлении теплоизоляционных блоков и плит, монолитной теплоизоляции чердаков, кровель, наружных стен, полов и др.;
  • В изготовлении отделочных материалов для потолка — плиток, плинтусов, розеток;

  • для монолитного домостроения и скорлупы для теплоизоляции трубопроводов.
  • для изготовления пенополистирольных газифицируемых моделей, используемых при литье металлов.

Сополимеры стирола с акрилонитрилом САН

Сополимер стирола с акрилонитрилом (САН) обычно содержит 24% последнего, что соответствует анизотропному составу смеси мономеров и позволяет получать продукт постоянного состава. САН превосходит по теплостойкости, прочности при растяжении, ударной вязкости и устойчивости к растрескиванию в агрессивных жидких средах, однако уступает по диэлектрическим свойствам и прозрачности. Стоимость САН значительно выше, чем полистирола. Аналогичными свойствами, но лучшими прозрачностью и устойчивостью к УФ облучению обладает тройной сополимер стирол-акрилонитрил-метилметакрилат (САМ); однако его стоимость ещё выше, чем САН.

Сополимеры САН обычно получают суспензионной или эмульсионной полимеризацией, аналогичной производству ПС.

Сополимеры САН имеют более высокую химическую стойкость и твердость поверхности, чем гомополимер. Исходный материал имеет желтоватый оттенок и его приходится подсинивать. Стойкость к атмосферному воздействию хорошая, что позволяет использовать его, например, для облицовки и в дорогой бытовой технике взамен хрупкого и не морозостойкого полистирола общего назначения.

Сополимеры акрилонитрила, бутадиена и стирола: АБС-пластик

Подобные сополимеры получили название «АБС-пластики». Существует несколько методов получения трехзвенного полимера (терполимера), но главные их принципы понятны на следующих примерах: 1) стирол и акрилонитрил добавляют в полибута-диеновую эмульсию, перемешивают и нагревают до 50С; затем добавляют растворимый в воде инициатор, например персульфат калия, и смесь полимеризуется; 2) бутадиенакрилонитрильный латекс добавляют в стиролакрилонитрильный латекс, смесь коагулируют и высушивают распылением.

Свойства варьируются в широком диапазоне в зависимости от композиции и метода производства. В целом, однако, АБС — пластики имеют высокую ударную прочность, химическую стой-кость и пластичность; не стойки к метилэтилкетону и сложным эфирам.

АБС очень технологичен, прекрасно перерабатывается как литьем под давлением, так и экструзией. Производители выпускают марки АБС- пластика с различными индексами текучести расплава, с повышенным блеском и матовые. Тонкие листы термоформуют в баночки и подносы. АБС-пластики широко применяются при изготовлении бытовой техники, где востребованы высокая прочность, высокий блеск, технологичность в окрашивании суперконцентратами, экологическая нейтральность и теплостойкость. На изделия из АБС-пластиков лучше, чем на полистирольные изделия наносятся декоративные покрытия и рисунки.

Технология производства полистирола

В промышленности полистирол получают радикальной полимеризацией стирола. Методы получения полистиролов отличаются по циклу работы, съему продукции с единицы объема, условиям проведения процесса полимеризации. От конкретного метода производства зависят свойства получаемого полистирола. Различают 4 способа полимеризации стирола: полимеризацию в массе (блоке) мономера, полимеризацию мономера в эмульсии (в основном производство АБС — пластиков), суспензионную полимеризацию (ударопрочный полистирол и пенополистирол) и полимеризацию в растворе (блок-сополимеры бутадиена и стирола).

При производстве полистирола общего назначения основными являются способы суспензионной полимеризации и полимеризации в массе. Эмульсионную полимеризацию применяют в сравнительно небольшом масштабе.

Для получения ударопрочных сополимеров стирола с каучуком наиболее широко применяют метод блочно-суспензионной полимеризации, при котором сначала полимеризацию ведут в массе (до достижения конверсии 20% — 40%), а затем в водной дисперсии.

Общей тенденцией развития технологии синтеза является увеличение мощности единичных агрегатов, как за счет возрастания реакционных объемов, так и за счет интенсификации режимов синтеза. В настоящее время производительность единичных агрегатов синтеза достигает 15-30 тыс. тонн полимера в год.

Полимеризация в массе

Метод производства полимеризацией в массе с неполной конверсией мономеров является в настоящее время одним из наиболее распространенных в силу высоких технико-экономических показателей. В отечественной промышленности метод полимеризации в массе был выбран в качестве основного в 70-х годах, и в настоящее время по этому методу выпускается около 60% продукции. Этот метод имеет оптимальную схему технологического процесса. Процесс осуществляется по непрерывной схеме в системе последовательно соединенных 2-3 аппаратов с мешалками; заключительную стадию процесса часто проводят в аппарате колонного типа. Начальная температура реакции 80-100°С, конечная 200-220 °С. Полимеризацию прерывают при степени превращения стирола 80% — 90%. Непрореагировавший мономер удаляют из расплава полистирола под вакуумом, а затем с водяным паром до содержания стирола в полимере 0,01% — 0,05%.

В полистирол вводят стабилизаторы, красители, антипирены и другие добавки и гранулируют. Блочный полистирол отличается высокой чистотой. Эта технология наиболее экономична (в ней отсутствуют операции промывки, обезвоживания и сушки мелкодисперсных продуктов) и практически безотходна (непрореагировавший стирол возвращается на полимеризацию). Проведение процесса до неполной конверсии мономера (80% — 90%) позволяет использовать высокие скорости полимеризации, контролировать температурные параметры, обеспечивать допустимые вязкости полимеризуемой среды. При проведении процесса до более глубоких степеней превращения мономера, затрудняется отвод тепла от высоковязкой реакционной массы, становится невозможным вести полимеризацию в изотермическом режиме. Эта особенность процесса полимеризации в массе привела к тому, что все большее внимание уделяется другим способам производства, и, в первую очередь, суспензионному методу.

Суспензионная полимеризация

Полимеризация в суспензии - конкурирующий технологический процесс, который развивается параллельно с полимеризацией в массе, основан на малой растворимости виниловых мономеров в воде и на нейтральности последней в реакциях радикальной полимеризации. Процесс используется для получения полистирола специальных марок, главным образом, пенополистирола. Суспензионный метод производства - полунепрерывный процесс - характеризуется наличием дополнительных технологических стадий (создание реакционной системы, выделение полученного полимера) и периодическим использованием оборудования на стадии полимеризации.

Процесс проводится в реакторах объемом 10-50 м 3 , снабженных мешалкой и рубашкой. Стирол суспендируют в деминерализованной воде, используя стабилизаторы эмульсии; инициатор полимеризации (органические пероксиды) растворяют в каплях мономера, где и происходит полимеризация. В результате образуются крупные гранулы в суспензии полимера в воде. Полимеризацию ведут при постепенном повышении температуры от 40 до 130°С под давлением в течение 8-14 часов. Из полученной суспензии полимер выделяют центрифугированием, после чего его промывают и сушат. Закономерности суспензионной полимеризации близки к закономерностям полимеризации в массе мономера, но существенно облегчены теплоотвод и перемешивание компонентов системы.

Эмульсионная полимеризация

В производстве полистирола эмульсионный метод ведения полимеризации не получил такого развития, как полимеризация в массе или суспензии. Это обусловлено тем, что при эмульсионной полимеризации получают продукт слишком высокого молекулярного веса. Чаще всего для последующей переработки его необходимо вальцевать либо каким-то другим методом снижать его молекулярный вес. Основное направление его применения - получение полупродукта для последующего производства пенополистирола экструзионным методом.Система эмульсионной полимеризации содержит стирол, воду, как дисперсионную среду, водорастворимый инициатор (персульфат калия), ионный эмульгатор, различные добавки, в частности призванные регулировать рН среды.

Полимеризация протекает в мицеллах эмульгатора, содержащих мономер. Образующийся полимер представляет собой высокодисперсную суспензию (латекс), не растворимую в воде. Система в целом является многокомпонентной, что затрудняет выделение полимера в чистом виде. Поэтому используются различные приемы его отмывки. Применение метода постепенно сокращается, так как он сопряжен с большим количеством сточных вод.

Химич Ирина

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тема: Полимеризация стирола в эмульсии

Цель работы: провести полимеризацию стирола эмульсионным способом, построить зависимость выхода полистирола от времени, определить молекулярную массу полимера вискозиметрическим методом.

Теоретическая часть

Полимеризация - процесс образования высокомолекулярных соединений в результате соединения большого числа молекул мономера в одну макромолекулу. При этом молекулы мономера и полимера имеют один и тот же элементарный состав. В общем случае реакцию полимеризации можно представить следующим образом:

полимеризация стирол способ эмульсионный

где X - заместитель. При этом не выделяются какие-либо побочные продукты.

В реакцию полимеризации могут вступать соединения, содержащие двойные или тройные связи, а также карбо- и гетероциклы.

Большинство процессов полимеризации имеет цепной характер и протекает через стадии инициирования, роста и обрыва цепи.

Инициирование цепи происходит путем присоединения активного центра к молекуле мономера, в результате чего происходит гемолитический или гетеролитический разрыв его реакционноспособных связей. Вновь образующийся активный центр представляет собой активный радикал либо ион:

В зависимости от типа активных центров, инициирующих цепной процесс, различают радикальную и ионную полимеризацию.

Рост цепи представляет собой многократное повторение актов присоединения молекул мономера к активному центру на конце цепи, в результате чего образуется активный полимер.

Обрыв цепи происходит обычно либо в результате взаимодействия двух растущих цепей (рекомбинация), либо в результате взаимодействия растущей макромолекулы с молекулами примесей или растворителя (передача цепи).

Радикальная полимеризация

При радикальной полимеризации активным центром является свободный радикал. В зависимости от способа образования радикалов (инициирования) можно выделить термическую полимеризацию, фотохимическую, радиационную (под действием гамма-лучей, рентгеновских лучей, ускоренных электронов), а также химически инициированную полимеризацию, протекающую в присутствии химических инициаторов - соединений, легко распадающихся в условиях реакции с образованием свободных радикалов.

Химически инициированная полимеризация является одним из наиболее распространенных методов радикальной полимеризации. В качестве инициаторов применяются пероксиды, гидропероксиды, азо- и диазо- соединения, окислительно - восстановительные системы и др. Например, распад пероксида бензола протекает с образованием двух радикалов:

Динитрил азобисизомасляной кислоты распадается с выделением азота, а также образует два радикала:

Энергия активации распада большинства инициаторов составляет свыше 120 КДж/моль.

При полимеризации часто используют окислительно-восстановительное инициирование. Особенностью такого инициирования является низкая энергия активации, что позволят проводить процесс при низких температурах. Примером такого инициирования может служить взаимодействие пероксида водорода с солями двухвалентного железа, в результате чего образуются свободные радикалы:

Энергия активации в окислительно-восстановительных системах составляет в среднем около 40 КДж/моль.

Реакция полимеризации начинается со стадии присоединения свободных радикалов к молекулам мономера, что приводит к возникновению реакционной цепи:

Полученное соединение так же является свободным радикалом и далее вступает в реакцию с большим числом молекул мономера, т.е. происходит рост цепи:

Таким образом, стадия роста цепи состоит из последовательного ряда актов взаимодействия свободного радикала с молекулами мономера. Скорость радикальной полимеризации определяется уравнением

где k р - константа скорости роста; k - константа скорости инициирования; k o - константа скорости обрыва цепи; [I] -концентрация инициатора; [М] - концентрация мономера.

Прекращение роста цепи или обрыв цепи, как правило, является результатом взаимодействия двух радикалов и происходит путем либо рекомбинации макрорадикалов, либо диспропорционирования. При рекомбинации макрорадикалов образуется одна полимерная молекула, не способная участвовать в дальнейшем росте:

При диспропорционировании число макромолекул не изменяется.

Обрыв цепи также может происходить в результате реакции передачи цепи. Передача цепи осуществляется при взаимодействии растущих макрорадикалов с молекулами мономера, полимера, а также с примесями или растворителями:

Образовавшийся активный радикал R, реагируя с молекулами мономера, дает начало новой цепи:

В случае образования неактивного радикала, не способного продолжить реакционную цепь, происходит прекращение полимеризации.

Ионная полимеризация

Активными центрами ионной полимеризации являются ионы, образующие в неполярных растворителях ионные пары. В полярных растворителях возникают сольватно-разделенные ионные пары и свободные ионы.

В зависимости от природы катализаторов и заряда образующихся ионов различают катионную и анионную полимеризацию.

Катионная полимеризация

Катионная полимеризация протекает под действием кислот и катализаторов Фиделя-Крафтса (АlCl 3 , ВF 3 , SnCl 4 , FеСl 3 и т.п.), т.е. электронакцепторных веществ. В присутствии воды, кислот, эфиров и других веществ, играющих роль сокатализатора, образуется активный каталитический комплекс, инициирующий реакцию:

При взаимодействии этого комплекса с молекулой мономера образуется активный карбоениевый центр:

Реакция роста заключается в присоединении молекул мономера к активному карбениевому центру с регенерацией этого активного центра на конце цепи:

Скорость роста описывается уравнением

где [С] - концентрация катализатора.

Катионная полимеризация протекает, как правило, с очень высокой скоростью, что позволяет проводить процесс при низких температурах. Например, полимеризацию изобутилена проводят при t= -100°С в среде жидкого этилена.

Обрыв цепи происходит как молекулярная реакция с отщеплением протона от соседнего с карбениевым ионом атома углерода и диссоциации каталитического комплекса:

Анионная полимеризация

Анионная полимеризация протекает в присутствии щелочных металлов, металлоорганических соединений, амида натрия, алкоголятов щелочных металлов и других электрондопорных соединений. Наибольшее практическое значение имеет полимеризация, протекающая под действием щелочных металлов или их алкинов.

Полимеризация акрилонитрила под действием амида калия в жидком аммиаке вызывается свободными ионами, вследствие диссоциации амида:

Образование карбоаниона происходит при взаимодействии амидного иона с молекулой мономера:

Рост цепи происходит в результате взаимодействия образовавшегося карбаниона с молекулой мономера с образованием нового аниона. Обрыв цепи происходит путем взаимодействия карбаниона с молекулой аммиака с регенерацией амидного иона, т.е. протекает реакция передачи цепи.

Ионно-координационная полимеризация

Ионно-координационная полимеризация вызывается комплексными катализаторами Циглера-Натта. Чаще всего в качестве катализаторов используют металлоорганические соединения алюминия и хлориды титана.

Активные центры при ионно-координационной полимеризации представляют собой металлоорганические соединения переходного металла. Они возникают в присутствии сокатализатора или при взаимодействии исходных мономеров с металлгидридными центрами на поверхности катализатора.

Образование активного металлографического соединения происходит следующим образом:

Рост полимерной цепи осуществляется путем внедрения молекулы мономера по связи в переходный металл-углерод:

Стадии внедрения молекулы мономера предшествует ее координация на металле с образованием неустойчивого р - компонента. Поэтому комплексные катализаторы получили название ионно -координационных . Обрыв цепи происходит в результате миграции атома водорода от атома углерода к металлу с образованием гидрида переходного металла и полимерной молекулы.

Использование для полимеризации комплексных металлоорганических катали-заторов приводит к образованию стереорегулярных полимеров . Эти катализаторы обладают высокой стереоспецифичностью .

2. СПОСОБЫ ПРОВЕДЕНИЯ ПОЛИМЕРИЗАЦИИ

В промышленности полимеризация осуществляется следующими основными способами: в газовой фазе, блоке (массе), растворе, эмульсии и суспензии.

2.1 Газовая полимеризация

Газофазной полимеризации подвергаются газообразные мономеры (этилен, пропилен). Процесс инициируется кислородом, который добавляется в мономер в небольших количествах (0,002ч0,008% об.) и проводится под большим давлением.

При взаимодействии этилена с кислородом образуются пероксидные или гидропероксильные соединения этилена:

Неустойчивая пероксидная связь - О - О под действием тепла разрывается с образованием би- и монорадикалов: ОСН 2 -СН 2 О · и СН 2 =СНО · . Свободные радикалы инициируют полимеризацию этилена.

2.2 Блочная полимеризация

Блочную полимеризацию или полимеризацию в массе проводят в конденсированной фазе в отсутствии растворителя. В результате полимеризации образуется концентрированный раствор (или расплав) полимера в мономере или монолитная твердая масса (блок).

Обычно блочную полимеризацию проводят в присутствии инициаторов или при термическом инициировании. По мере увеличения степени полимеризации мономера увеличивается молекулярная масса среды и ее вязкость, что затрудняет отвод тепла из зоны реакции. В результате этого могут возникать местные перегревы реакционной массы, вследствие чего полимер получается неоднородным по молекулярной массе. Поэтому блочную полимеризацию проводят с малой скоростью.

2.3 Полимеризация в растворе

Возможны два способа проведения полимеризации в растворе. По первому способу применяется растворитель, который растворяет и мономер, и полимер. Получаемый раствор полимера (лак) используют как таковой или полимер выделяют. По второму способу применяют растворитель, который растворяет мономер, но не растворяет полимер. Образующейся полимер выпадает в осадок.

При полимеризации в растворе значительно улучшается отвод выделяющегося в ходе реакции тепла, но в результате протекания реакций передачи цепи через растворитель получаемые полимеры имеют более низкую молекулярную массу.

2.4 Полимеризация в эмульсии

При эмульсионной полимеризации в качестве дисперсионной среды обычно используют воду. Для стабилизации эмульсии применяют различные эмульгаторы (олеаты, пальмитаты, и другие соли жирных кислот). Эмульсионную полимеризацию проводят в присутствии водорастворимых инициаторов (персульфат калия, пирофосфаты бикарбонаты). Для уменьшения разветвленности цепи добавляют меркаптаны.

Для создания тонкой эмульсии реакционную смесь энергично перемешивают, в результате чего мономер разбивается на мелкие капли, покрытые слоем эмульгатора.

Полимеризация протекает в адсорбционных слоях эмульгатора на поверхности полимерно-мономерных частиц. Растущая макромолекула является центром, вкруг которого образуется частица латекса. Полученный латекс коагулируют, вводя в систему раствор электролита, а выпавший в осадок полимер отделяют. В результате эмульсионной полимеризации получается полимер с большой молекулярной массой и низкой степенью полидисперсности.

Возможность применения эмульсионного способа в ряде случаев ограничивает образование большого количества сточных вод, требующих очистки от токсичных мономеров, а также трудоемкость стадии сушки тонкодисперсного полимера. Кроме того, недостатком способа является загрязнение полимера остатками эмульгатора и других добавок, что ухудшает его электрические свойства.

2.5 Полимеризация в суспензии

Полимеризация в суспензии проводится также в воде. Для повышения устойчивости образующейся более грубой эмульсии используют слабые эмульгаторы - поливиниловый спирт, водорастворимые эфиры целлюлозы, желатин, глину, оксид алюминия и т. п. Применяемые инициаторы растворимы в мономере.

Полимеризация происходит в каплях, представляющих, в сущности, небольшие блоки, поэтому такую полимеризацию иногда называют капельной (гранульной) полимеризацией.

В отличие от эмульсионной полимеризации в данном случае отпадает необходимость в проведении коагуляции, так как образующиеся гранулы полимера свободно выделяются из водной фазы.

Порядок выполнения работы

Полимеризация стирола эмульсионным способом проводится на лабораторной установке, схема которой приведена на рисунке 1.

Полимеризация стирола проводится по рецепту, приведенному ниже (в весовых частях):

Стирол 50 г.

Вода дистиллированная 90 мл

Персульфат аммония 0,35 г

Стеарат калия 2,3 г

В реакционной колбе приготовляют раствор эмульгатора в воде при 70 °С. По каплям при хорошем перемешивании добавляют стирол и через 10-15 минут вводят инициатор, растворенный в 10 мл количестве воды. Через 30, 60 и 90 минут после введения инициатора пипеткой отбирают пробы реакционной массы точно по 10 мл. Эмульсию в пробах разрушают добавлением 10 - 15 мл раствора NaCl и 2 капли 1н азотной кислоты.

Осадок полимера, образующийся при разрушении эмульсии, отфильтровывают на предварительно взвешенном фильтре и промывают водой. Полимер сушат на воздухе до постоянной массы.

1 - колбонагреватель; 2 - трехгорлая колба; 3 - обратный холо-дильник; 4 - гидрозатвор; 5 - мешалка; 6 - термометр; 7 - ЛАТР

Рисунок 1 - Схема лабораторной установки

Обработка экспериментальных данных

Выход полимера в каждой пробе определяется по уравнению

где G n - масса полимера в пробе;

G M - масса мономера в пробе перед началом опыта.

Таблица 1 - Зависимость массы и выхода полимера от времени

По полученным данным строим зависимость выхода полимера от времени

Рисунок 2 - График зависимости выхода полимера от времен

Определение молекулярной массы полимера

Молекулярную массу полученного полистирола определяют вискозиметрическим методом. Для этого из высушенной третьей пробы берут три навески полимера весом 0,1; 0,2 и 0,3 г и каждую растворяют в 20 мл толуола.

Для определения молекулярной массы используют стеклянный вискозиметр, имеющий две риски. Последовательно определяют время истечения 20 мл чистого толуола и растворов полимера, в порядке увеличения концентрации полимера, между верхней и нижней риской.

Определение времени истечения повторяют трижды для каждого образца и определяют среднее значение времени.

Таблица 2 - время истечения полимера и чистого толуола.

Полученные значения времени истечения чистого толуола и трех растворов используют в расчетах. Определяют относительную вязкость каждого раствора по формуле:

где t - время истечения раствора полимера;

t o - время истечения чистого растворителя.

Удельную вязкость:

Приведенную вязкость:

где С - концентрация полимера в растворе (г/100 мл растворителя).

Найдем концентрации:

Подставляя в уравнение, получим:

Определив приведенную вязкость для каждого раствора, строят зависимость приведенной вязкости от концентрации полимера. Экстраполируя полученную зависимость к нулевой концентрации полимера, получают х а рактеристическую вязкость.

Пример построения графической зависимости приведенной вязкости от концентрации полимера и определения характеристической вязкости показан на рисунке 3.

Таблица 3 - Вязкости для трех проб

Размещено на http://www.allbest.ru/

Рисунок 3 - Определение характеристической вязкости

Для определения молекулярной массы полимера используют уравнение Мар-ка-Хувинга:

Исходя, из уравнения прямой зависимости вязкости раствора полимера от концентрации видим,= 1,2767, а для системы полистирол-толуол при температуре 25°С константы имеют следующие значения: а = 0,69, К =1,7· 10 -4 . Подставляя, получим:

М = 413875,3 г/моль

В ходе данной работы провели полимеризацию стирола эмульсионным способом, построили зависимость выхода полистирола от времени и определили молекулярную массу полимера вискозиметрическим методом: М = 413875,3 г/моль.

В качестве рекомендации к проведению процесса можно принять к сведению, что требуется изменение конструкции элемента перемешимания, для образования более мелкодисперсной эмульсии, что приведет к более качественному получению продуктов реакции полимеризации стирола.

Необходимо применение более совершенного нагревателя, для точного регулирования температуры процесса и наилучшего выхода процесса на режим.

Размещено на Allbest.ru

Подобные документы

    Понятие и значение полимеризации, особенности стадий этого процесса на примере радикального механизма. Сущность и обзор способов получения полистирола, его физических и химических свойств как вещества. Анализ сфер применения и технология переработки.

    презентация , добавлен 17.11.2011

    Характеристика методов получения политетрафторэтилена: эмульсионная, радиационная, суспензионная полимеризация, фотополимеризация. Кинетика и механизм суспензионной полимеризации тетрафторэтилена в воде, зависимость его плотности от молекулярной массы.

    курсовая работа , добавлен 13.12.2010

    Молекулярная масса и влияние степени полимеризации целлюлозы на отдельные стадии технологического процесса получения искусственных волокон и пленок. Химические и физико-химические методы определения степени полимеризации целлюлозы и ее молекулярной массы.

    реферат , добавлен 28.09.2009

    Практические методы осуществления процесса полимеризации, принципы выбора инициатора и стабилизатора. Новшества в производстве суспензионного полистирола. Характеристика исходного сырья, полупродуктов и готовой продукции. Нормы технологического режима.

    курсовая работа , добавлен 25.01.2014

    "Живая" контролируемая радикальная полимеризация. Характеристики получаемого полимера. Признаки протекания полимеризации в контролируемом режиме. Метод диаграмм Фишера. Радикальная "живая" полимеризация гидрофильных мономеров. Анализ продуктов термолиза.

    дипломная работа , добавлен 17.10.2013

    Изучение основных реакций, обусловливающих формирование молекулярной цепи полиизопрена, и их количественная оценка. Участие молекул мономера и непредельных фрагментов полиизопрена в определении концентрации активных центров в процессе полимеризации.

    реферат , добавлен 18.03.2010

    Аналитический обзор методов производства поливинилхлорида. Физико-химические основы производства винилхлорида. Производство поливинилхлорида методом блочной полимеризации. Эмульсионная полимеризации винилхлорида. Полимеризация винилхлорида в суспензии.

    реферат , добавлен 24.05.2012

    Исследование полимеризации диацетиленовых мономеров, полимеризующихся только в кристаллическом состоянии с образованием полимеров, состоящих из вытянутых цепей с сопряженными связями. Термическая полимеризация и полимеризация под действием Y излучения.

    реферат , добавлен 22.02.2010

    Практическое проведение эмульсионной полимеризации и сополимеризации акриловых мономеров, скорость и кинетика реакции, влияющие факторы. Способ предварительного создания концентрированной эмульсии, образование микроэмульсии и анализ ее дисперсности.

    статья , добавлен 22.02.2010

    Понятие и общая характеристика полистирола, особенности его химического строения, физические свойства и сферы применения. Методика получения данного соединения, используемое сырье и технологический процесс производства. Этапы проведения полимеризации.

В реакцию полимеризации вступают соединения, которые содержат по крайней мере одну кратную связь или циклы. Реакционная способность мономера зависит от его строения, сопряжения двойной связи в молекуле мономера, количества и взаимного расположения заместителей, их поляризационного явления на двойную связь.

Радикальная полимеризация протекает по цепному механизму и описывается кинетикой неразветвленной цепной реакции.

Основные стадии цепной реакции:

  1. Инициирование - образование активных центров;
  2. Рост цепи - последовательное присоединение мономеров к активному центру;
  3. Обрыв цепи - гибель активного центра;
  4. Передача цепи - передача активного центра на другую молекулу.

I. Инициирование цепи (зарождение)

Данная стадия является самой энергоемкой. Различают физическое и химическое инициирование.

Физическое инициирование:

Химическое инициирование

Данный способ инициирования применяется чаще всего. Принцип заключается в использовании веществ-инициаторов (перекиси, азосоединения, red-ox системы), у которых энергия обрыва химической связи значительно меньше, чем у мономеров. При этом процесс происходит в две стадии: сначала генерируются радикалы инициатора, которые затем присоединяются к молекуле мономера, образуя первичный мономерный радикал.



Инициатор очень похож по свойствам на катализатор, но его отличие состоит в том, что инициатор расходуется в процессе химической реакции, а катализатор - нет.

Примеры инициаторов:


II. Рост Цепи

Мономеры поочередно присоединяются к активному центру первичного мономерного радикала.


III. Обрыв цепи

Обрыв цепи происходит в результате гибели активных центров (обрыв кинетической цепи).

  • Обрыв кинетической цепи - исчезают активные центры;
  • Обрыв материальной цепи - когда данная цепь перестает расти, но активный центр передается другой макромолекуле или мономеру (реакция передачи цепи).

Реакции приводящие к гибели кинетической и материальной цепи – реакции рекомбинации и диспропорционирования.

Вид реакции обрыва цепи (рекомбинация или диспропорционирование) зависит от ряда факторов, в частности от строения молекулы мономера. Если мономер содержит громоздкий по размеру или электроотрицательный по химической природе заместитель, то столкновения таких растущих радикалов друг с другом не происходит и обрыв цепи осуществляется путем диспропорционирования. Например, в случае метилметакрилата:

По мере роста радикалов увеличивается вязкость системы, и вследствие подвижности макрорадикалов скорость обрыва цепи путем рекомбинации снижается. Рост времени жизни макрорадикалов при увеличении вязкости системы приводит к интересному явлению – ускорению полимеризации на поздних стадиях (гель-эффект ) вследствие увеличения концентрации макрорадикалов.

IV. Передача цепи

Передача цепи происходит путём отрыва растущим радикалом атома или группы атомов от какой-то молекулы. Реакция передача цепи приводит к обрыву материальной цепи, а рост кинетической продолжается.

Различают передачу цепи:


Особенности радикальной полимеризации:

  • Высокая скорость полимеризации;
  • Разветвленность;
  • Возможны присоединения г-г, г-хв, хв-хв;
  • Полимолекулярные полимеры.

Кинетика радикальной полимеризации

Химическая кинетика - это раздел химии, изучающий механизм и закономерности протекания химической реакции во времени, зависимости этих закономерностей от внешних условий.

Для изучения кинетики радикальной полимеризации необходимо рассмотреть зависимость скорости реакции и степени полимеризации от концентрации исходных веществ, давления и температуры.

Обозначения:

I. Влияние концентрации исходных веществ на скорость реакции.

Общая скорость реакции зависит от скорости образования радикалов V ин (скорости инициирования) , от скорости роста цепи V р и ее обрыва V o.

Мы будем рассматривать реакцию свободнорадикальной полимеризации, когда инициирование осуществляется с помощью химических инициаторов.

Рассмотрим каждую стадию:


Рассмотрение кинетики существенно облегчается, если реакция протекает в условиях, близких к стационарному режиму , при котором скорости возникновения и исчезновения свободных радикалов можно считать равными . При этом концентрация активных центров будет постоянна.


Как видно из графика кривой можно выделить пять участков по значениям скоростей основной реакции превращения мономера в полимер в результате полимеризации:

1 - участок ингибирования, где концентрация свободных радикалов мала. И они не могут начать цепной процесс полимеризации;

2 - участок ускорения полимеризации, где начинается основная реакция превращения мономера в полимер, причем скорость растет;

3 - участок стационарного состояния , где происходит полимеризация основного количества мономера при постоянной скорости (прямолинейная зависимость конверсии от времени);

4 - участок замедления реакции, где скорость реакции уменьшается в связи с убылью содержания свободного мономера;

5 - прекращение основной реакции после исчерпания всего количества мономера.Стационарный режим наблюдается обычно на начальной стадии протекания реакции, когда вязкость реакционной массы невелика и равновероятны случаи зарождения цепи и ее обрыва.


Таким образом скорость реакции роста цепи равна:


II. Влияние концентрации исходных веществ на степень полимеризации.

Степень полимеризации зависит от соотношения скоростей роста и обрыва цепи:

Учтем соответствующие выражения для скоростей


Степень полимеризации равна:


III. Влияние температуры на скорость реакции роста цепи.

Выполним подстановку уравнения Аррениуса в уравнение скорости роста цепи:

Прологарифмируем полученное выражение:

Числитель (6+15-4 = 17) больше нуля, значит, чем больше температура, тем выше скорость реакции радикальной полимеризации. Однако с ростом температуры увеличивается и вероятность столкновения радикалов друг с другом (обрыв цепи путем диспропорционирования или рекомбинации) или с низкомолекулярными примесями. В результате молекулярная масса полимера в целом уменьшается, увеличивается доля низкомолекулярных фракций в полимере. Возрастает число побочных реакций, приводящих к образованию разветвленных молекул. Увеличивается нерегулярность при построении цепи полимера вследствие возрастания доли типов соединения мономера «голова к голове» и «хвост к хвосту».


Энергия активации роста ~ 6 ккал/моль;

Энергия активации инициирования ~30 ккал/моль;

Энергия активации обрыва ~8 ккал/моль.

Числитель (6-15-4 = -13) меньше нуля, значит с ростом температуры степень полимеризации уменьшается. В результате молекулярная масса полимера в целом уменьшается, увеличивается доля низкомолекулярных фракций в полимере.

V. Влияние давления на скорость полимеризации

Принцип Ле-Шателье: Если на систему оказывается внешнее воздействие, то в системе активируются процессы, ослабляющие это воздействие.

Чем выше давление, тем выше скорость радикальной полимеризации. Однако чтобы повлиять на свойства конденсированных систем, нужно прикладывать давление в несколько тысяч атмосфер.

Особенностью полимеризации под давлением является то, что увеличение скорости не сопровождается уменьшением молекулярной массы получаемого полимера.

Ингибиторы и замедлители полимеризации.

Явления обрыва и передачи цепи широко используются на практике для:

  • предотвращения преждевременной полимеризации при хранении мономеров;
  • для регулирования процесса полимеризации

В первом случае к мономерам добавляют ингибиторы или стабилизаторы , которые вызывают обрыв цепи, а сами превращаются в соединения, не способные инициировать полимеризацию. Также они разрушают пероксиды, образующиеся при взаимодействии мономера с атмосферным кислородом.

Ингибиторы : хиноны, ароматические амины, нитросоединения, фенолы.

Регуляторы полимеризации вызывают преждевременный обрыв материальной цепи, снижая молекулярную массу полимера пропорционально введенному количеству регулятора. Примером их являются меркаптаны.

Термодинамика радикальной полимеризации

Реакция роста цепи обратима, наряду с присоединением мономера к активному центру может происходить и его отщепление-деполимеризация.

Термодинамическая возможность полимеризации, как и любой другой равновесный химический процесс можно описать с помощью функций Гиббса и Гельмгольца:


Однако функция Гиббса наиболее приближена к реальным условиям, поэтому мы воспользуемся ей:

Так же изменение функции Гиббса связано с константой равновесия реакции уравнением:

Константа полимеризационно-деполимеризационного равновесия при достаточно большом молекулярном весе образующегося полимера (p>>1) зависит только от равновесной концентрации мономера:

Откуда следует, что


Из уравнения (а) можно найти такую температуру, при которой реакция полимеризации не будет идти, а из уравнения (б) можно найти равновесную концентрацию мономера, при превышении которой будет происходить полимеризация.

Влияние температуры

Для определения влияния температуры на равновесную концентрацию мы представим уравнение (б) в следующем виде:


В случае, когда ΔH°<0 и ΔS°<0 с ростом температуры увеличивается равновесная концентрация мономера. Верхний предел ограничен концентрацией мономера в массе. Это значит, что есть некоторая верхняя предельная температура - Т в.пр. , выше которой полимеризация невозможна.

В случае, когда ΔH°>0 и ΔS°>0 наблюдается обратная зависимость: с уменьшением температуры увеличивается равновесная концентрация мономера. Следовательно, для мономеров с отрицательным тепловым эффектом существует нижняя предельная температура Т н.пр.

Так же есть известные случаи, когда эти зависимости не пересекаются, но они не представляют практического интереса.


Термодинамическая вероятность

Теперь рассмотрим термодинамическую возможность протекания реакции, условием которой является равенство ΔG<0. Оно определяется как изменением энтальпии так и энтропии, причем вклад энтропийного члена будет изменяться с температурой реакции.


При полимеризации по кратным связям энтропия системы всегда уменьшается, т.е. процесс по энтропийным соображениям невыгоден. Слабая зависимость ∆S° от природы мономера связана с тем, что основной вклад в ∆S° вносит потеря поступательных степеней свободы молекул мономеров.

Но также известны мономеры, для которых при полимеризации происходит увеличение энтропии. Такое изменение ∆S° характерно для некоторых ненапряженных циклов. Причем, поскольку полимеризация оказывается выгодной с энтропийной точки зрения, она может протекать даже при отрицательных тепловых эффектах (полимеризация циклов S 8 и Se 8 с образованием линейных полимеров)

Расчеты и измерения энтропии для полимеризации большинства виниловых мономеров показывают, что ∆S° составляет около 120 Дж/К·моль.

Напротив, ∆Н° изменяется в зависимости от химического строения мономера в довольно широких пределах (∆Q° = −∆Н° варьируется от нескольких кДж/моль до 100 кДж/моль), что обусловлено различием природы кратной связи и ее заместителей. Отрицательные значения ∆Н° свидетельствуют о том, что полимеризация выгодна с точки зрения энтальпийного фактора. При обычных температурах порядка 25°С полимеризация термодинамически разрешима для мономеров, тепловой эффект которых превышает 40 кДж/моль. Это условие соблюдается для большинства виниловых мономеров. Однако, при полимеризации по С=О связи тепловые эффекты ниже 40 кДж/моль. Поэтому условие ∆G<0 соблюдается только при достаточно низких температурах, когда |TΔS°|<|ΔH°|.

Рассмотрим явление несоответствия теоретической и практической энтальпии полимеризации

Выделяется меньшее количество энергии, куда она девается?

  1. Разрушается эффект сопряжения;
  2. Стерическое отталкивание (при синтезе полистирола образуется спиральная молекула за счет стерического отталкивания).

Причина возрастания Q при полимеризации циклов - термодинамчески не выгодный валентный угол между гибридизованными орбиталями и отталкивание неподеленных электронных пар заместителя.

  1. Раскрытие цикла (ΔS 1 ° > 0)
  2. Рост цепи (ΔS 2 ° < 0)

ΔS° = ΔS 1 ° + ΔS 2 °, ΔS° может быть больше или меньше нуля.

Блочный полистирол получают полимеризацией в массе. Полимеризация стирола в массе (блоке) в настоящее время получила большое распространение. Она может проводиться в присутствии и в отсутствие инициатора.

Инициаторами полимеризации по обычно являются пероксид бензоила, динитрил азобисизомасляной кислоты и др. Продукты распада инициаторов входят в состав макромолекул полистирола, вследствие чего этим способом не удается получить полистирол с высокими диэлектрическими показателями.

В промышленности для получения полистирола высокой степени чистоты полимеризацию осуществляют без инициатора (термическая полимеризация).

Кинетика радикальной полимеризации стирола до глубоких конверсии изучена значительно более полно, чем кинетика полимеризации других мономеров. Это позволяет весьма точно рассчитать температурный режим полимеризации для получения полистирола с заданными свойствами.

Термическая полимеризация стирола до полной конверсии мономера непрерывным способом в аппаратах колонного типа без перемешивания (принцип «идеального» вытеснения) в настоящее время не используется, поскольку этот процесс имеет ряд серьезных недостатков. Основными недостатками технологического процесса полимеризации стирола в массе с полной конверсией мономера являются его большая длительность, необходимость проведения процесса при высоких температурах (200-230 °С) на конечных стадиях для достижения высокой конверсии (99%), а также получение полимера с невысокой молекулярной массой (рисунок 1) и широким молекулярно-массовым распределением. Кроме того, с глубиной конверсии сильно возрастает вязкость реакционной массы, достигая к концу процесса 1·10 3 – 1·10 4 Па·с . Проведение термической полимеризации стирола до неполной конверсии мономера (80-95%) в каскаде аппаратов с перемешиванием (принцип «идеального» смешения) и удалением остаточного мономера позволяет осуществлять реакцию при более низких температурах (140- 160 °С) и получать полистирол с более узким молекулярно-массовым распределением . При этом обеспечивается значительная интенсификация процесса и получение полистирола более высокого качества.

Промышленные процессы полимеризации стирола до неполной конверсии мономера были разработаны с помощью методов математического моделирования.

Первым этапом моделирования процесса является математическое описание (модель) реакции термической полимеризации стирола. Для расчета промышленных процессов может быть использована не полная кинетическая модель, а зависимость брутто-скорости реакции от конверсии.

Для полистирола в интервале рабочих температур 110-150 °С молекулярная масса полимера зависит только от температуры и не зависит от степени конверсии мономера:

Второй этап моделирования процесса заключается в математическом описании реакторов для проведения процессов полимеризации. Он содержит описание свойств реакционной среды и условий теплообмена в реакторе.

К свойствам реакционной среды относятся:

  • вязкость,
  • теплопроводность,
  • теплоемкость,
  • давление паров над раствором полимера.

Особенностью полимеризации стирола является высокая вязкость реакционной среды , которая колеблется в реакторах от 1 до 1·10 3 Па·с.

Для обеспечения заданного теплообмена в реакторах используют мешалки определенного типа и рассчитывают затраты мощности на перемешивание. При конверсии до 40% и вязкости реакционной среды до 10 Па·с применяют листовые мешалки (в первом реакторе), при более высоких вязкостях становятся выгодными спиральные (ленточные) мешалки .

Одним из основных вопросов при полимеризации в изотермическом реакторе является отвод тепла . Высокую интенсивность процесса полимеризации стирола можно обеспечить при теплосъеме путем испарения и возврата мономера на полимеризацию. Кроме того, частичный съем тепла осуществляется через рубашку аппарата. Необходимую разность температур между реакционной массой и хладагентом в рубашке реактора определяют из уравнения теплового баланса

Q Э + Q N - Q BX -Q X = 0

где Q э - тепло экзотермической реакции; Q n - тепло, выделяющееся при работе мешалки; Q BX - тепло, расходуемое на нагрев входного потока реакционной среды; Q x - теплоотвод через стенку реактора.

Для обеспечения устойчивого режима в реакторе должно соблюдаться условие: изменение теплосъема в зависимости от температуры должно происходить быстрее, чем изменение тепловыделения.

После определения условий устойчивой работы реакторов решают вопрос о возможности управления ими и о выборе соответствующих средств автоматического регулирования.

В настоящее время блочная полимеризация стирола до неполной конверсии мономера в полимер проводится в каскаде реакторов с перемешиванием по двум вариантам:

  • в отсутствие растворителей;
  • с использованием растворителей.

Производство блочного полистирола общего назначения осуществляется в присутствии этилбензола (15-20%), наличие которого в процессе облегчает отвод тепла, работу оборудования, особенно насосов, из-за снижения вязкости реакционной массы, а также управление процессом в целом.

Ниже приведены описания технологических процессов получения блочного полистирола общего назначения.

Производство блочного полистирола общего назначения до неполной конверсии мономера в каскаде реакторов с перемешиванием

Наибольшее распространение получила технологическая схема производства блочного полистирола общего назначения в каскаде из двух реакторов с перемешиванием. Процесс включает стадии :

  • подготовки исходного стирола,
  • полимеризации стирола в реакторах 1-й и 2-й ступеней,
  • удаления и ректификации непрореагировавшего мономера,
  • окрашивания расплава полистирола,
  • грануляции полистирола,
  • расфасовки и упаковки гранул полистирола.

Схема получения блочного полистирола в каскаде реакторов с перемешиванием показана на рисунке 1.

Из емкости 1 стирол непрерывно подается дозировочным насосом в реактор 1-й ступени , который представляет собой вертикальный цилиндрический аппарат с коническим днищем емкостью 16 м 3 . Реактор снабжен листовой мешалкой с частотой вращения 30-90 об/мин . Полимеризация в реакторе 1-й ступени 2 протекает при температуре 110-130 °С до конверсии 32-45% в зависимости от марки получаемого продукта. Съем избыточного тепла реакции происходит за счет испарения части стирола из реакционной массы.

Реактор 2-й ступени 3 по конструкции и габаритам аналогичен реактору 1-й ступени, но снабжен ленточной мешалкой с частотой вращения 2- 8 об/мин . При этом обеспечивается эффективное перемешивание высоковязких реакционных сред. Полимеризация в реакторе 2-й ступени протекает до 75- 88%-ной степени конверсии при температуре 135-160 °С в зависимости от марки получаемого полимера.

Раствор полистирола в стироле из реактора 2-й ступени выгрузным насосом 5 подается в вакуум-камеру 6 через трубу, которая обогревается паром давлением не менее 2,25 МПа . При этом происходит дополимеризация стирола до 90%-ной степени конверсии .

Расплав полистирола поступает в вакуум-камеру 6 с температурой 180- 200 °С . В трубчатке перегревателя вакуум-камеры расплав полистирола нагревается до 240 °С и поступает в полую камеру объемом 10 м 3 с остаточным давлением 2,0-2,6 кН/м 2 . При этом происходит испарение стирола из расплава и содержание остаточного мономера снижается до 0,1-0,3%. Пары стирола поступают на регенерацию и затем вновь возвращаются в емкость 1 .

Расплав полистирола из вакуум-камеры 6 поступает в экструдер 7 и на грануляцию.

При получении полистирола общего назначения в присутствии этилбензола , последний находится в замкнутом цикле в смеси со стиролом. Объем избыточного тепла реакции в аппаратах осуществляется испарением под вакуумом части стирола и этилбензола. Испаряемая смесь конденсируется и возвращается в зону реакции. Для поддержания нормальной работы мешалок в полимеризаторах непрерывно контролируется вязкость реакционной массы. Заданная вязкость поддерживается автоматически изменением подачи смеси стирола и этилбензола.

Оба полимеризатора работают под вакуумом, температура процесса колеблется на уровне 115-135 °С и 140-160 °С соответственно. Содержание полимера в реакторе 1-й ступени достигает 30-40% , в реакторе 2-й ступени- 65-70%. Раствор содержит 15-20% этилбензола. Из реактора 2-й ступени раствор полимера поступает в испаритель, в котором поддерживается вакуум (остаточное давление около 2,6 кПа). Пары стирола и этилбензола удаляются, а расплав полимера собирается в нижней части испарителя, откуда с температурой 200-230 °С направляется на окрашивание и грануляцию.

Пары стирола и этилбензола из испарителя поступают в скруббер для очистки, затем конденсируются и возвращаются в исходную емкость стирола и этилбензола.

Таким образом, технологическая схема получения блочного полистирола общего назначения с использованием этилбензола в процессе отличается от технологической схемы, показанной на рисунке 1, только наличием скруббера и конденсатора паров стирола и этилбензола .

Сравнительная оценка способов блочной полимеризации стирола с полной и неполной конверсией мономера

Способ блочной полимеризации стирола с неполной конверсией мономера имеет ряд преимуществ перед способом блочной полимеризации с полной конверсией стирола:

1) производительность агрегата для полимеризации повышается более чем в 2 раза за счет сокращения продолжительности полимеризации, что обуславливает уменьшение капиталовложений и энергозатрат;

2) аппаратурное оформление позволяет регулировать технологические параметры процесса и получать продукты различного качества в зависимости от требований потребителя;

3) полистирол, выходящий из вакуум-камеры, содержит меньше остаточного мономера (до 0,2%), чем продукт, выходящий из колонны с полной конверсией мономера (0,5%).

Однако при осуществлении процесса с неполной конверсией мономера неизбежны отходы - отгонные конденсаты стирола. При реализации крупных производств возникает необходимость использования отгонных конденсатов. При общей мощности производства 100-120 тыс. т/год полистирола получается около 10-12 тыс. т/год отгонных конденсатов.

Утилизация отгонных конденсатов осуществляется по двум направлениям:

1) очисткой отгонных конденсатов с получением стирола стандартной чистоты (ректификация);

2) полимеризацией отгонных конденсатов с получением полистирола несколько худшего качества, но который можно использовать для производства менее ответственных изделий. В промышленности развиваются оба направления.

Список литературы:
Зубакова Л. Б. Твелика А. С, Даванков А. Б. Синтетические ионообменные материалы. М., Химия, 1978. 183 с.
Салдадзе К М., Валова-Копылова В. Д. Комплексообразующие иониты (комплекситы). М., Химия, 1980. 256 с.
Казанцев Е. Я., Пахолков В. С, Кокошко 3. /О., Чупахин О. Я. Ионообменные материалы, их синтез и свойства. Свердловск. Изд. Уральского политехнического института, 1969. 149 с.
Самсонов Г. В., Тростянская Е. Б., Елькин Г. Э. Ионный обмен. Сорбция органических веществ. Л., Наука, 1969. 335 с.
Тулупов П. Е. Стойкость ионообменных материалов. М., Химия, 1984. 240 с. Полянский Я. Г. Катализ ионитами. М., Химия, 1973. 213 с.
Кассиди Г. Дж.у Кун К А. Окислительно-восстановительные полимеры. М., Химия, 1967. 214 с. Херниг Р. Хелатообразующие ионообменники. М., Мир, 1971. 279 с.
Тремийон Б. Разделение на ионообменных смолах. М., Мир, 1967. 431 с.
Ласкорин Б. Я., Смирнова Я. М., Гантман М. Я. Ионообменные мембраны и их применение. М., Госатомиздат, 1961. 162 с.
Егоров Е. В., Новиков П. Д. Действие ионизирующих излучений на ионообменные материалы. М., Атомиздат, 1965. 398 с.
Егоров Е. В., Макарова С. Б. Ионный обмен в радиохимии. М., Атомиздат,

В процессе блочной полимеризации стирола образуется раствор синтезируемого полимера в не вступившем в реакцию мономере. С ростом глубины процесса (степени конверсии мономера) увеличивается концентрация раствора и соответственно растет его показатель преломления . Замеряя показатель преломления раствора по ходу полимеризации, можно получить информацию о кинетике процесса (в данном случае – полимеризации стирола).

В три пробирки с пришлифованными пробками помещают по 5 мл стирола и вносят взятые на аналитических весах навески инициатора – АИБН – в количествах порядка 10, 25 и 50 мг (концентрация растворов соответственно порядка 0,2, 0,5 и 1% масс.). Пробирки продувают инертным газом в течение 5 мин и помещают в термостат с температурой порядка 70 0 . Через 10 мин. после начала термостатирования из каждой пробирки на часовое стекло отбирают стеклянной палочкой несколько капель раствора и определяют показатель преломления. Из каждой пробирки отбирают не менее пяти проб ,каждый раз отмечая время с начала полимеризации .

Степень конверсии мономера определяют по приводимой ниже таблице.

Зависимость показателя преломления n D от степени конверсии (р) стирола

p,% n D p, % n D p, % n D
1,5420 1,5475 1,5518
1,5429 1,5482 1,5519
1,5435 1,5488 1,5523
1,5441 1,5492 1,5525
1,5446 1,5495 1,5528
1,5451 1,5500 1,5531
1, 5455 1,5504 1,5534
1,5461 1,5508 1,5537
1,5465 1,5511 1,5540
1,5468 1,5515 1,5543

Концентрацию инициатора (в моль/л) находят по формуле:

Где g – навеска инициатора (в г)

V – объём полимеризующейся смеси (в данном случае – 5 мл)

М 1 – молекулярная масса инициатора (для АИБН М 1 = 164)



Тангенс угла наклона полученной прямой равен порядку реакции по инициатору.

КАТИОННАЯ ПОЛИМЕРИЗАЦИЯ СТИРОЛА


Полимеризация стирола может протекать по различным вариантам, в том числе и по катионному механизму. В качестве катализаторов катионной полимеризации часто используют неорганические кислоты Льюиса – в данном случае TiCl 4 . Использование этого катализатора требует проведение реакции в условиях, исключающих попадание влаги – прежде всего абсолютно сухой аппаратуры.

Стирол свежеперегнанный 3,5 мл

Тетрахлорид титана перегнанный 1 мл

Дихлорэтан сухой 70 мл

В трехгорлую колбу, снабженную мешалкой, термометром и капельной воронкой и продутую инертным газом в течение 3-5 мин., помещают 70 мл сухого дихлорэтана и охлаждают до 0 0 С в бане с охлаждающей смесью.

Сухой пипеткой вносят 1 мл TiCl 4 и из капельной воронки в течение 15-20 мин. по каплям вводят мономер – стирол, следя, чтобы температура не превышала 0 0 . После введения мономера смесь перемешивают еще 30 мин., а затем приливают 80 мл спирта (для разложения реакционной смеси). Через несколько минут осторожно декантируют растворитель с выделившегося маслообразного продукта реакции, прибавляют еще 10-15 мл спирта и растирают палочкой до затвердевания. Твердый полимер отфильтровывают, промывают спиртом и высушивают. Определяют выход полимера и степень конверсии мономера, а также расход катализатора в г/ г полимера.

Что еще почитать